Vigenèrova šifra: Porovnání verzí

m
m (vzorec)
Řádek 25: Řádek 25:
 
<br />
 
<br />
 
== Kryptoanalýza Vigenèrovy šifry==
 
== Kryptoanalýza Vigenèrovy šifry==
 
+
Kryptoanalýza Vigenèrovy šifry spočívá v kombinaci metod [[Index koincidence|indexu koincdence]] s [[Kasiského test|Kasiského testem]]. Nejprve je nutné nalézt periodu klíče pomocí následujících kroků:<ref name="Friedman">Friedmanův test — index koincidence. ''Matematika.cz'' [online]. Brno: Vydavatelství Nová média, ©2016-2014 [cit. 2018-05-21]. Dostupné z: https://matematika.cz/friedmanuv-test</ref>
 +
* Odhad možné délky klíče (kupříkladu 2-15). Tento odhad se označí jako množina ''K<sub>o</sub>''
 +
* Za pomoci Kasiského testu se nalezne množina možných délek (period) klíče. Tato množina se označí ''K<sub>k</sub>''
 +
* Obě množiny se sjednotí do množiny ''K''. <math>K = K_o \cup K_k</math>
 +
<br />
 
== Odkazy ==
 
== Odkazy ==
 
=== Reference ===
 
=== Reference ===

Verze z 21. 5. 2018, 23:10

Stránka ve výstavbě
Inkwell icon - Noun Project 2512.svg Na této stránce se právě pracuje. Prosím needitujte tuto stránku, dokud na ní zůstává tato šablona. Předejdete tak editačnímu konfliktu. Jestliže uběhla od poslední editace doba alespoň dvou dnů, neváhejte tuto šablonu odstranit. Inkwell icon - Noun Project 2512.svg

Vigenèrova šifra je klasická polyalfabetická substituční šifra, pojmenovaná po francouzském diplomatovi z 16. století Blaisovi de Vigenère.[1]

Vigenèrův čtverec

K šifrování se používal tzv. Vigenèrův čtverec. V něm je v každém z řádků tatáž abeceda posunutá o vzestupný počet znaků. Jedná se tedy o vyčerpávající výčet všech možných posunů Caesarovy šifry. K zašifrování se používá periodicky se opakující klíčové heslo, kterým může být slovo, sousloví, věta či skupina znaků tak, aby délka hesla odpovídala délce otevřeného textu. Základní princip Vigenèrovy šifry spočívá v posunu každého znaku otevřeného textu o počet znaků odpovídající znaku hesla na stejném umístění. Průsečík sloupce znaku z otevřeného textu a odpovídajícího řádku znaku hesla znázorní znak výsledné šifry. Každý znak otevřeného textu je tak šifrovaný o jiný posun daný příslušným znakem hesla. Počet znaků opakujícího se hesla se nazývá perioda.[2]

Přestože koncept Vigenèrovy šifry byl publikován již roku 1586, šířeji začala být využívána až o 200 let později a prolomili ji až Babbag a Kasiský v 19. století.[2]

Příklad šifrování Vigenèrovou šifrou

Byl zvolen klíč "FRED"s periodou 4. K zašifrování byl zvolen otevřený text "PLAINTEXT". Zprávu, klíč i výslednou šifru zachycuje následující tabulka.

Zpráva P L A I N T E X T
Klíč F R E D F R E D F
Zašifrovaný text U C E L S L I A D

Autoklíč

Autoklíč je speciální modifikace Vigenèrovy šifry, která má zaručit větší bezpečnost. Tato modifikace spočívá v eliminaci veškeré periodicity ve zprávě. Zprávu zahajuje dohodnuté heslo a místo vlastního opakování následuje text zprávy. Otevřený text je vlastně vyjma počátečního hesla šifrován sám sebou za principu využití Vigenèrovy šifry.[1]

Kryptoanalýza Vigenèrovy šifry

Kryptoanalýza Vigenèrovy šifry spočívá v kombinaci metod indexu koincdence s Kasiského testem. Nejprve je nutné nalézt periodu klíče pomocí následujících kroků:[3]

  • Odhad možné délky klíče (kupříkladu 2-15). Tento odhad se označí jako množina Ko
  • Za pomoci Kasiského testu se nalezne množina možných délek (period) klíče. Tato množina se označí Kk
  • Obě množiny se sjednotí do množiny K.


Odkazy

Reference

  1. 1,0 1,1 ŠŮSTAL, Ondřej. Aplikace pro kryptoanalýzu substitučních šifer [online]. Zlín: Univerzita Tomáše Bati ve Zlíně, 2015, 55 s. [cit. 2018-05-20]. Dostupné také z: http://hdl.handle.net/10563/34256. Bakalářská práce. Univerzita Tomáše Bati ve Zlíně. Fakulta aplikované informatiky, Ústav automatizace a řídicí techniky. Vedoucí práce Roman Šenkeřík.
  2. 2,0 2,1 ŠRÁMEK, Jan. Základní šifrovací systémy a moderní aplikace šifer [online]. Praha: Bankovní institut vysoká škola Praha, 2009. 48 s. [cit. 2018-05-21]. Dostupné také z:<https://theses.cz/id/60n0xn/>. Bakalářská práce. Bankovní institut vysoká škola Praha. Katedra informačních technologií. Vedoucí práce Vladimír Beneš
  3. Friedmanův test — index koincidence. Matematika.cz [online]. Brno: Vydavatelství Nová média, ©2016-2014 [cit. 2018-05-21]. Dostupné z: https://matematika.cz/friedmanuv-test

Související články

Asymetrická_kryptografie
Historický vývoj kryptografie v období světových válek
Informační bezpečnost - její klíčové aspekty, hrozby a minimalizace rizika
Moderní použití kryptologie
Substituční šifry
Symetrická_kryptografie
Šifrování s veřejným klíčem (metoda RSA)
Šifry
Základní pojmy v kryptologii
Základní rozdělení kryptologie

Klíčová slova

Kryptografie, Šifra, Šifrování, Šifrovací klíč, Klasické šifry