Bisimulace: Porovnání verzí

Řádek 8: Řádek 8:
  
 
Když <math>B(w,x)</math>, pak musí platit následující tři podmínky:
 
Když <math>B(w,x)</math>, pak musí platit následující tři podmínky:
# atomická harmonie
+
* atomická harmonie
 
     <math>\forall p (w {\Vdash_1} p \Longleftrightarrow x {\Vdash_2} p)</math>
 
     <math>\forall p (w {\Vdash_1} p \Longleftrightarrow x {\Vdash_2} p)</math>
# "tam"
+
* "tam"
 
     <math>w{R_1}w' \Rightarrow \exists x'(x{R_2}x' \wedge B(w', x'))</math>
 
     <math>w{R_1}w' \Rightarrow \exists x'(x{R_2}x' \wedge B(w', x'))</math>
# "zpět"  
+
* "zpět"  
 
     <math>x{R_2}x' \Rightarrow \exists w'(w{R_2}w' \wedge B(w', x'))</math>
 
     <math>x{R_2}x' \Rightarrow \exists w'(w{R_2}w' \wedge B(w', x'))</math>
  
Řádek 25: Řádek 25:
 
   Když <math>B\subseteq {W_1}\times{W_2}</math> je bisimulace z <math>\mathbb{M}_1</math> do <math>\mathbb{M}_2</math>, tak <math>\breve{B}=\{(x,w)|B(w,x)\}</math> je bisimulace z <math>\mathbb{M}_2</math> do <math>\mathbb{M}_1</math>.
 
   Když <math>B\subseteq {W_1}\times{W_2}</math> je bisimulace z <math>\mathbb{M}_1</math> do <math>\mathbb{M}_2</math>, tak <math>\breve{B}=\{(x,w)|B(w,x)\}</math> je bisimulace z <math>\mathbb{M}_2</math> do <math>\mathbb{M}_1</math>.
 
* je '''tranzitivní''' <br />
 
* je '''tranzitivní''' <br />
   Když <math>B_1</math> je bisimulace z <math>\mathbb{M}_1</math> do <math>\mathbb{M}_2</math> a <math>B_2</math> je bisimulace z <math>\mathbb{M}_2</math> do <math>\mathbb{M}_3</math>, pak <math>B_1 \circ B_2 =\{({w_1},{w_2})|\exists{w_2}({w_1}{B_1}{w_2}\wedge {w_2}{B_2}{w_3})\}</math> je bisimulace.
+
   Když <math>B_1</math> je bisimulace z <math>\mathbb{M}_1</math> do <math>\mathbb{M}_2</math> a <math>B_2</math> je bisimulace z <math>\mathbb{M}_2</math> do <math>\mathbb{M}_3</math>,
 +
pak <math>B_1 \circ B_2 =\{({w_1},{w_2})|\exists{w_2}({w_1}{B_1}{w_2}\wedge {w_2}{B_2}{w_3})\}</math> je bisimulace.
  
 
== Zdroje ==
 
== Zdroje ==

Verze z 10. 9. 2014, 13:04

Definice

Bisimulace je binární relace ekvivalence mezi dvěma sémantickými modely.

Mějme dva Kripkovské modely Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathbb{M}_1 = (W_1, R_1, V_1)} a Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathbb{M}_2=(W_2, R_2, V_2)} . Řekneme, že Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B\subseteq {W_1} \times {W_2}} je relace bisimulace mezi Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathbb{M}_1} a Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathbb{M}_2} , pokud:

Když Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B(w,x)} , pak musí platit následující tři podmínky:

  • atomická harmonie
   Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \forall p (w {\Vdash_1} p \Longleftrightarrow x {\Vdash_2} p)}

  • "tam"
   Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle w{R_1}w' \Rightarrow \exists x'(x{R_2}x' \wedge B(w', x'))}

  • "zpět"
   Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle x{R_2}x' \Rightarrow \exists w'(w{R_2}w' \wedge B(w', x'))}

Řekneme, že Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (\mathbb{M}_1,w)} a Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle (\mathbb{M}_2,x)} jsou bisimilární, když existuje bisimulace Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B} taková, že Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B(w,x)} .

Vlastnosti bisimulace

  • je reflexivní
 Identická relace je bisimulace z Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathbb{M}}
 do Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathbb{M}}
. 
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle Id=\{(x,x)|x\in W\}} , tudíž Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathbb{M}, x \underline{\leftrightarrow} \mathbb{M}, x}
  • je symetrická
 Když Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B\subseteq {W_1}\times{W_2}}
 je bisimulace z Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathbb{M}_1}
 do Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathbb{M}_2}
, tak Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \breve{B}=\{(x,w)|B(w,x)\}}
 je bisimulace z Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathbb{M}_2}
 do Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathbb{M}_1}
.
  • je tranzitivní
 Když Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B_1}
 je bisimulace z Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathbb{M}_1}
 do Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathbb{M}_2}
 a Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B_2}
 je bisimulace z Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathbb{M}_2}
 do Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle \mathbb{M}_3}
,

pak Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle B_1 \circ B_2 =\{({w_1},{w_2})|\exists{w_2}({w_1}{B_1}{w_2}\wedge {w_2}{B_2}{w_3})\}} je bisimulace.

Zdroje

  1. Blackburn P., de Rijke M., Venema Y. Modal Logic. Cambridge University Press. (2002).
  2. Arazim P. Relace bisimulace (bakalářská práce). (2009).