Statistická závislost: Porovnání verzí

 
(Není zobrazena jedna mezilehlá verze od stejného uživatele.)
Řádek 8: Řádek 8:
 
== Statistická závislost alternativních proměnných ==
 
== Statistická závislost alternativních proměnných ==
  
=== Příklad 1 ===
+
=== Příklad 1 - Statistická nezávislost ===
 
Mějme dva alternativní znaky (proměnné):  
 
Mějme dva alternativní znaky (proměnné):  
  
Řádek 114: Řádek 114:
  
 
Jsou-li (X,Y) nezávislé, pak N<sub>11</sub>N<sub>22</sub> - N<sub>12</sub>N<sub>21</sub> = 0  
 
Jsou-li (X,Y) nezávislé, pak N<sub>11</sub>N<sub>22</sub> - N<sub>12</sub>N<sub>21</sub> = 0  
 +
 
Jsou-li (X,Y) závislé, pak N<sub>11</sub>N<sub>22</sub> - N<sub>12</sub> N<sub>21</sub> ≠ 0
 
Jsou-li (X,Y) závislé, pak N<sub>11</sub>N<sub>22</sub> - N<sub>12</sub> N<sub>21</sub> ≠ 0
  

Aktuální verze z 3. 9. 2014, 17:51

Základní charakteristiky

  • Statistická závislost znamená vztah mezi dvěma proměnnými či soubory dat. Pro dvojici závislých proměnných platí, že z hodnot jedné proměnné můžeme odhadovat hodnoty druhé proměnné - to u nezávislých proměnných nejde.
  • Neznamená příčinnost (tzn. že jedna proměnná zapříčiňuje druhou). Jedinou metodou, která může prokázat příčinnost je experiment.
  • Síla vztahu, vzájemné závislosti je obvykle vyjádřená korelačním koeficientem v intervalu <-1;1>, kde 1 znamená úplnou přímou úměrnost, 0 značí nezávislost a -1 je úplná nepřímá úměrnost.
  • Tvar, trend vzájemné závislosti umožňuje zjistit regresní analýza.

Statistická závislost alternativních proměnných

Příklad 1 - Statistická nezávislost

Mějme dva alternativní znaky (proměnné):

X – pohlaví {1=ŽENA, 2=MUŽ}

Y – názor {1=ANO, 2=NE}

Pro zobrazení tzv. dvojného třídění je vhodná kontingenční tabulka (viz tabulky níže).

Rozdělení četností

Y = 1 Y = 2 SUMA
X = 1 56 24 80
X = 2 54 66 120
SUMA 110 90 200

Rozdělení relativních četností

Y = 1 Y = 2 SUMA
X = 1 0,28 0,12 0,40
X = 2 0,27 0,33 0,60
SUMA 0,55 0,45 1

Rozdělení podmíněných relativních četností (Y/X)

Y = 1 Y = 2 SUMA
X = 1 0,55 0,45 1
X = 2 0,55 0,45 1


Příklad 2 - Silná závislost

Rozdělení četností

Y = 1 Y = 2 SUMA
X = 1 3 77 80
X = 2 107 13 120
SUMA 110 90 200

Rozdělení podmíněných relativních četností

Y = 1 Y = 2 SUMA
X = 1 0,04 0,96 1
X = 2 0,89 0,11 1


Příklad 3 - Slabá závislost

Rozdělení četností

Y = 1 Y = 2 SUMA
X = 1 46 34 80
X = 2 64 56 120
SUMA 110 90 200

Rozdělení podmíněných relativních četností

Y = 1 Y = 2 SUMA
X = 1 0,575 0,425 1
X = 2 0,533 0,467 1


Obecně o rozdělení četností

Jsou-li (X,Y) nezávislé, pak N11N22 - N12N21 = 0

Jsou-li (X,Y) závislé, pak N11N22 - N12 N21 ≠ 0

Rozdělení četností

Y = 1 Y = 2 SUMA
X = 1 N11 N12 N1*
X = 2 N21 N22 N2*
SUMA N*1 N*2 N**

N** = N

Rozdělení podmíněných relativních četností

Y = 1 Y = 2 SUMA
X = 1 N11/N1* N12/N1* 1
X = 2 N21/N2* N22/N2* 1