Interval spolehlivosti: Porovnání verzí

 
(Není zobrazeno 6 mezilehlých verzí od jednoho dalšího uživatele.)
Řádek 1: Řádek 1:
 +
== Definice ==
 +
Často lze předpokládat, že náhodné veličiny z náhodného výběru mají normální rozdělení -> pak má i výběrový průměr normální rozdělení = bodový odhad (jde o jeden bod).
 +
* '''Interval spolehlivosti''' je ''intervalový odhad'', který sestrojíme proto, abychom se dozvěděli co nejvíce informací ''o neznámé relativní četnosti nebo o průměru základního souboru''.
 +
=== Použití intervalu spolehlivosti ===
 +
* Např.: šířkou intervalu spolehlivosti můžeme posuzovat náhodnou výběrovou chybu (= rozdíl mezi výběrovou statistikou a parametrem populace, který vznikl kvůli působení náhody při výběru vzorku populace).
 +
* ''Čím užší'' interval spolehlivosti sestrojíme, ''tím více'' můžeme věřit, že se blíží k základnímu souboru ZS.
 +
== Hodnoty ==
 +
* Pro interval spolehlivosti nejčastěji používáme hodnoty α rovny 0,9; 0,95; 0,99 a 0,995.
 +
** Pro '''95%''' interval spolehlivosti máme hodnotu '''1,96'''.
 +
** Pro '''99%''' interval spolehlivosti máme hodnotu '''2,58'''.
 +
== Interpretace ==
 +
* Hladina spolehlivosti 95% nebo 99% '''neznamená, že průměr µ leží uvnitř tohoto intervalu s touto pravděpodobností.'''
 +
* Průměr ''µ'' je sice neznámý, ale pro danou populaci má určitou danou hodnotu; interval spolehlivosti je pak sestrojen tak, aby pokryl tento parametr ''µ'' s danou spolehlivostí.
 +
* 99% interval spolehlivosti tedy značí, že ve 100 náhodných výběrech se daná charakteristika objeví právě 99krát.
  
'''• CO to je?'''
+
== Reference ==
 
+
# Hendl, J. (2004). Přehled statistických metod zpracování dat: analýza a metaanalýza dat. (1. vyd.) Praha: Portál.   
- často lze předpokládat, že náhodné veličiny z náhodného výběru mají normální rozdělení -> pak má i výběrový průměr normální rozdělení = bodový odhad (jde o jeden bod)
+
# Zvára, K. (0001). Biostatistika: analýza a metaanalýza dat. (1. vyd., 583 s.) Praha: Karolinum.
- interval spolehlivosti je intervalový odhad, který sestrojíme proto, abychom se dozvěděli co nejvíce informací o neznámé relativní četnosti nebo o průměru základního souboru
 
 
 
 
 
'''• K ČEMU se používá?'''
 
 
 
- např.: šířkou intervalu spolehlivosti můžeme posuzovat náhodnou výběrovou chybu (= rozdíl mezi výběrovou statistikou a parametrem populace, který vznikl kvůli působení náhody při výběru vzorku populace)
 
- čím užší interval spolehlivosti sestrojíme, tím víc můžeme věřit, že se blíží k základnímu souboru
 
 
 
 
 
'''• HODNOTY'''
 
 
 
- pro interval spolehlivosti nejčastěji používáme hodnoty α rovny 0,9; 0,95; 0,99 a 0,995
 
 
 
- pro '''95%''' interval spolehlivosti máme hodnotu '''1,96'''
 
 
 
- pro '''99%''' interval spolehlivosti máme hodnotu '''2,58'''
 
 
 
 
 
'''• INTERPRETACE'''
 
 
 
- hladina spolehlivosti 95% nebo 99% neznamená, že průměr µ leží uvnitř tohoto intervalu s touto pravděpodobností
 
 
 
- průměr µ je sice neznámý, ale pro danou populaci má určitou danou hodnotu; interval spolehlivosti je pak sestrojen tak, aby pokryl tento parametr µ s danou spolehlivostí
 
 
 
 
 
'''Zdroje'''
 
 
 
1. Hendl, J. (2004). Přehled statistických metod zpracování dat: analýza a metaanalýza dat. (1. vyd.) Praha: Portál.   
 
 
 
2. Zvára, K. (0001). Biostatistika: analýza a metaanalýza dat. (1. vyd., 583 s.) Praha: Karolinum.
 
 
[[Kategorie: Statistika|*]]
 
[[Kategorie: Statistika|*]]

Aktuální verze z 5. 7. 2014, 15:15

Definice

Často lze předpokládat, že náhodné veličiny z náhodného výběru mají normální rozdělení -> pak má i výběrový průměr normální rozdělení = bodový odhad (jde o jeden bod).

  • Interval spolehlivosti je intervalový odhad, který sestrojíme proto, abychom se dozvěděli co nejvíce informací o neznámé relativní četnosti nebo o průměru základního souboru.

Použití intervalu spolehlivosti

  • Např.: šířkou intervalu spolehlivosti můžeme posuzovat náhodnou výběrovou chybu (= rozdíl mezi výběrovou statistikou a parametrem populace, který vznikl kvůli působení náhody při výběru vzorku populace).
  • Čím užší interval spolehlivosti sestrojíme, tím více můžeme věřit, že se blíží k základnímu souboru ZS.

Hodnoty

  • Pro interval spolehlivosti nejčastěji používáme hodnoty α rovny 0,9; 0,95; 0,99 a 0,995.
    • Pro 95% interval spolehlivosti máme hodnotu 1,96.
    • Pro 99% interval spolehlivosti máme hodnotu 2,58.

Interpretace

  • Hladina spolehlivosti 95% nebo 99% neznamená, že průměr µ leží uvnitř tohoto intervalu s touto pravděpodobností.
  • Průměr µ je sice neznámý, ale pro danou populaci má určitou danou hodnotu; interval spolehlivosti je pak sestrojen tak, aby pokryl tento parametr µ s danou spolehlivostí.
  • 99% interval spolehlivosti tedy značí, že ve 100 náhodných výběrech se daná charakteristika objeví právě 99krát.

Reference

  1. Hendl, J. (2004). Přehled statistických metod zpracování dat: analýza a metaanalýza dat. (1. vyd.) Praha: Portál.
  2. Zvára, K. (0001). Biostatistika: analýza a metaanalýza dat. (1. vyd., 583 s.) Praha: Karolinum.