Korelační a regresní analýza: Porovnání verzí
Řádek 1: | Řádek 1: | ||
== Korelace == | == Korelace == | ||
− | * Znázorňuje statistickou závislost dvou kvantitativních veličin (měří vzájemný vztah dvou proměnných. | + | * Znázorňuje statistickou závislost dvou kvantitativních veličin (měří vzájemný vztah dvou proměnných. |
− | * Dvě proměnné jsou korelované, jestliže určité hodnoty jedné proměnné mají tendenci se vyskytovat společně s určitými hodnotami druhé proměnné<ref>Hendl, J. (2009). Přehled statistických metod: Analýza a metaanalýza dat. Praha: Portál</ref | + | * Dvě proměnné jsou korelované, jestliže určité hodnoty jedné proměnné mají tendenci se vyskytovat společně s určitými hodnotami druhé proměnné<ref>Hendl, J. (2009). Přehled statistických metod: Analýza a metaanalýza dat. Praha: Portál</ref> |
=== Korelační koeficienty === | === Korelační koeficienty === | ||
− | Vlastnosti korelačního koeficientu r: | + | Vlastnosti ''korelačního koeficientu r'': |
− | * Označujeme r | + | * Označujeme ''r'' |
− | * r ∈ 〈-1,1〉 | + | * ''r ∈ 〈-1,1〉'' |
− | * r = 0 ⇒ nezávislost | + | * ''r = 0'' ⇒ nezávislost |
− | * r = 1 ⇒ přímá závislost | + | * ''r = 1'' ⇒ přímá závislost |
− | * r = -1 ⇒ nepřímá závislost | + | * ''r = -1'' ⇒ nepřímá závislost |
− | Korelační determinace r<sup>2</sup> – znázorňuje podíl společné variance | + | Korelační determinace r<sup>2</sup> – znázorňuje podíl společné variance |
==== Pearsonův korelační koeficient ==== | ==== Pearsonův korelační koeficient ==== | ||
− | * Měří statistickou závislost u lineárních dat | + | * Měří statistickou závislost u lineárních dat |
− | * Korelační koeficient je velmi ovlivněn odlehlými hodnotami | + | * Korelační koeficient je velmi ovlivněn odlehlými hodnotami |
− | * Korelační koeficient se počítá pomocí směrodatných odchylek obou proměnných a jejich kovariance (kovariance = míra vzájemné vazby mezi veličinami)< | + | * Korelační koeficient se počítá pomocí směrodatných odchylek obou proměnných a jejich kovariance (''kovariance'' = míra vzájemné vazby mezi veličinami) |
+ | <math>r=\frac{\sum\left(x_i-x̄ \right)\left(y_i-y \right)}{\sqrt{\sum\left(x_i-x̄ \right)^2\sum\left(y_i-y \right)^2}}=\frac{S_xy}{S_x S_y}</math> | ||
+ | |||
+ | |||
==== Spearmanův koeficient korelace ==== | ==== Spearmanův koeficient korelace ==== | ||
− | * Označujeme r<sub>sp</sub | + | * Označujeme r<sub>sp</sub> |
− | * Korelační koeficient pořadí | + | * Korelační koeficient pořadí |
* Zachycuje obecně monotónní (rostoucí/ klesající) vztahy mezi proměnnými, nikoli pouze lineární<br /> | * Zachycuje obecně monotónní (rostoucí/ klesající) vztahy mezi proměnnými, nikoli pouze lineární<br /> | ||
* Je rezistentní vůči odlehlým hodnotám<br /> | * Je rezistentní vůči odlehlým hodnotám<br /> |
Verze z 5. 6. 2014, 13:59
Korelace
- Znázorňuje statistickou závislost dvou kvantitativních veličin (měří vzájemný vztah dvou proměnných.
- Dvě proměnné jsou korelované, jestliže určité hodnoty jedné proměnné mají tendenci se vyskytovat společně s určitými hodnotami druhé proměnné[1]
Korelační koeficienty
Vlastnosti korelačního koeficientu r:
- Označujeme r
- r ∈ 〈-1,1〉
- r = 0 ⇒ nezávislost
- r = 1 ⇒ přímá závislost
- r = -1 ⇒ nepřímá závislost
Korelační determinace r2 – znázorňuje podíl společné variance
Pearsonův korelační koeficient
- Měří statistickou závislost u lineárních dat
- Korelační koeficient je velmi ovlivněn odlehlými hodnotami
- Korelační koeficient se počítá pomocí směrodatných odchylek obou proměnných a jejich kovariance (kovariance = míra vzájemné vazby mezi veličinami)
Nelze pochopit (MathML, alternativně SVG nebo PNG (doporučeno pro moderní prohlížeče a kompenzační pomůcky): Neplatná odpověď („Math extension cannot connect to Restbase.“) od serveru „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle r=\frac{\sum\left(x_i-x̄ \right)\left(y_i-y \right)}{\sqrt{\sum\left(x_i-x̄ \right)^2\sum\left(y_i-y \right)^2}}=\frac{S_xy}{S_x S_y}}
Spearmanův koeficient korelace
- Označujeme rsp
- Korelační koeficient pořadí
- Zachycuje obecně monotónní (rostoucí/ klesající) vztahy mezi proměnnými, nikoli pouze lineární
- Je rezistentní vůči odlehlým hodnotám
- Pro malé rozsahy dat je jeho výpočet méně pracný než Pearsonův korelační koeficient
Kendallův korelační koeficient
- Označujeme tau tk
- Neparametrický test nezávislosti
- Rozdíl mezi pravděpodobností, že hodnoty dvou proměnných jsou ve stejném pořadí, a pravděpodobností, že ve stejném pořadí nejsou
- Větší citlivost na některé nelineární vztahy
Čtyřpolní korelační koeficient
- Označujeme φ
- Jedná se o Pearsonův korelační koeficient vypočítaný pro dvě alternativní proměnné, které kódujeme pomocí hodnot 0 a 1
Bodově biserální koeficient korelace
- Označujeme rpb
- Měří vztah mezi spojitou metrickou proměnnou a binární proměnnou
- V praxi se vzorec zpravidla nepoužívá (lze jej nahradit použitím algoritmu pro Pearsonův koeficient korelace, kde binární proměnnou zastupují nuly a jedničky)
Příklady využití korelačních koeficientů v psychometrii
- Reliabilita (korelace test – retest, split half)
- Validita (korelace test – kritérium)
- Diskriminační síla položky (korelace položka – test)
- Odhad objektivity (korelace hodnotitel I – hodnotitel II)
Regresní analýza
Regresní analýza je statistická metoda, umožňující nám prozkoumat vztah mezi dvěma proměnnými - tzv. nezávisle proměnnou (X – nazýváme regresand, cílová proměnná) a tzv. závisle proměnnou (Y – nazýváme též regresor)[2][3][4]. Pomáhá nám pochopit, jak se změní hodnota závisle proměnné v návaznosti na změnu jedné z nezávisle proměnných (zatímco ostatní nezávisle proměnné zůstávají konstantní). Konečný odhad je založen na tzv. regresní funkci.
Velmi vděčni za regresní analýzu budeme ve chvíli, kdy se např. rozhodneme k posouzení kvalit uchazečů o zaměstnání použít testovou baterii 3 testů. Zatímco korelační koeficient nám umožní zjistit, zda mezi proměnnými existuje vztah a jak je silný (to znamená, zda zvolené testy korelují např. s hodnocením, jaké zaměstnanec získá po ukončení zkušební doby), regresní analýza postupuje o krok dál a umožní nám na základě získaných dat predikovat do budoucna. (V tomto případě tak díky regresní analýze můžeme zjistit, že ačkoliv všechny tři zvolené testy vysoce korelují s kritériem, už pouhý jeden ze zvolených tesů má pro nás dostatečnou predikční sílu a v budoucnu tak využijeme jen tento jeden a uspoříme tak čas).
Historie
Pojem regrese (z lat. regressus, ustupuji, pohybuji se zpět) zavedl do statistiky anglický vědec Francis Galton koncem 19.století, a to jako "regres(i) k průměru". Tím označil fakt, že např. synové vysokých rodičů jsou sice v průměru (statisticky) vyšší než byli jejich rodiče, zároveň ale individuálně nedosahují extrémních hodnot předchozí generace. Jako kdyby se jedinci postupně "vraceli k průměru". Galtonův název se z jeho eugenických výzkumů rozšířil na jakékoli zkoumání souvislostí mezi náhodnými veličinami a vznikla statistická regresní analýza.
Lineární regresní funkce
Lineární regrese je metoda, při které je soubor bodů v grafu proložen přímkou, neboť předpokládáme, že závislost y na x lze graficky vyjádřit přímkou (viz. obrázek). Pokud měřené body proložíme přímkou, bude při odečítání z grafu mezi ypsilonovou hodnotou měřeného bodu a ypsilonovou hodnotou ležící na vytvoření přímce odchylka. Podstatou lineární regrese je nalézt právě takovou přímku, aby součet druhých mocnin zmíněných odchylek byl co nejmenší, jedná se tedy o aproximaci daných hodnot přímkou a to metodou nejmenších čtverců.
Model regresní analýzy
V rovnici lineární regresní model vyjádříme takto y = α + βx + e, přičemž β představuje vektor, α bod, ve kterém vložená přímka protíná ypsilonovou osu, x představuje nezávisle proměnnou, y představuje závisle proměnnou a e představuje chybu.
Neznámé hodnoty α a β odhadujeme právě pomocí metody nejmenších čtverců.
Postup v SPSS
Zadání výpočtu
- Pro snadnější porozumění co a kam vyplnit použijeme následující příklad: Úspěšnost v prodeji nahrávky v závislosti na množství reklamy (vyjádřeno ve finanční nákladnosti reklamy)[5].
- V menu SPSS postupně volíme Analyze → Regression → Linear…
- Nyní je potřeba vyplnit jednotlivá data a to následujícím způsobem
- Dependent variable – závislá proměnná, která graficky znázorněno leží na ose Y a jejíž vývoj chceme pomocí regrese předvídat z nezávisle proměnné (objem prodeje nahrávky)
- Independent variable – nezávisle proměnná, graficky znázorněno leží na ose Y (finanční investice do reklamy)
Interpretace dat:
- Tabulka: ignorujeme
- Tabulka MODEL SUMMARY:
- R = vyjádření prosté korelace mezi proměnnými
- R2 = toto číslo vynásobeno 100 je procento, do jaké míry nezávisle proměnná (reklama) vysvětluje pohyb (v našem případě nárůst) závisle proměnné (v našem případě prodej nahrávek)
- Tabulka ANOVA
- Zajímají nás hodnoty F a Sig pro účely zamítnutí nebo přijetí H0
- Tato tabulka vyjadřuje „pouze“ zda je náš model signifikantně dobrým predátorem situace, ale neříká nám nic o jednotlivých datech a proto se díváme do poslední, čtvrté tabulky
- Tabulka COEFFICIENTS
- B/Constant = intercept, aneb místo, v němž regresní přímka protíná osu Y, interpretujeme jako množství prodeje nahrávky v okamžiku, kdy investice do reklamy je nulová
- B/Nezávisle proměnná = sklon regresní přímky, získané číslo vyjadřuje, o kolik více nahrávek bude prodáno, navýšíme-li investici do reklamy o „1 jednotku“
- t + Sig = p hodnota a její vliv na zamítnutí / přijetí H0
- Na základě čísel získaných v této tabulce mohu předvídat prodej nahrávek dle objemu investovaných peněz do reklamy podle této „rovnice“
- Prodej nahrávky = „intercept“ + (sklon x finanční investice do reklamy)
Zdroje
- ↑ Hendl, J. (2009). Přehled statistických metod: Analýza a metaanalýza dat. Praha: Portál
- ↑ Hendl, J. (2006). Přehled statistických metod zpracování dat. Praha: Portál.
- ↑ Zvára, K. (2008). Regresní analýza. Praha: Matfypress.
- ↑ Regresní analýza. Retrieved from: http://cs.wikipedia.org/wiki/Regresní_analýza
- ↑ Field, A. (2007). Discovering Statistics Using IBM SPSS Statistics. Londýn: SAGE.