Robotika: Porovnání verzí
m |
m |
||
Řádek 9: | Řádek 9: | ||
Značný rozvoj robotů se rozpoutal v 60. letech převážně v USA. V roce 1968 vytvořil Stanfordský výzkumný institut SRI (Stanford Research Institute) robota Shakeyho, který byl do určité míry schopen orientace v prostředí. Modely robotů se dále zdokonalovaly a v 70. letech již vstoupily do masové výroby. První oblastí, kde našly uplatnění, byl automobilový průmysl. Tyto roboty prováděly činnosti jako svařování či lakování a jiné pro člověka nepříliš bezpečné operace. V 80. letech přebírá první místo ve využití robotů Japonsko. V této dekádě byly stroje vybavovány čidly hmatu a počítačovým viděním. | Značný rozvoj robotů se rozpoutal v 60. letech převážně v USA. V roce 1968 vytvořil Stanfordský výzkumný institut SRI (Stanford Research Institute) robota Shakeyho, který byl do určité míry schopen orientace v prostředí. Modely robotů se dále zdokonalovaly a v 70. letech již vstoupily do masové výroby. První oblastí, kde našly uplatnění, byl automobilový průmysl. Tyto roboty prováděly činnosti jako svařování či lakování a jiné pro člověka nepříliš bezpečné operace. V 80. letech přebírá první místo ve využití robotů Japonsko. V této dekádě byly stroje vybavovány čidly hmatu a počítačovým viděním. | ||
− | Roku 2000 představila Honda robota Asima a psího robota Aido. Tyto roboty se staly pop kulturními fenomény, ale od samostatně myslícího stroje dělí je a jejich následovníky ještě značná vzdálenost.<ref name=":1" /> Nadějné výsledky výzkumu robotů exoskeletony - robotické kostry, které pomáhají handicapovaným v pohybu, se již začínají používat jako zdravotní pomůcky. | + | Roku 2000 představila Honda robota Asima a psího robota Aido. Tyto roboty se staly pop kulturními fenomény, ale od samostatně myslícího stroje dělí je a jejich následovníky ještě značná vzdálenost.<ref name=":1" /> Nadějné výsledky výzkumu robotů exoskeletony - robotické kostry, které pomáhají handicapovaným v pohybu, se již začínají používat jako zdravotní pomůcky.<ref>SIEGEL, Judy. FDA approves Israel’s ReWalk device enabling paraplegics to walk. Jerusalem Post [online]. 2014. Dostupné z: http://www.jpost.com/Health-and-Science/FDA-approves-Israels-ReWalk-device-enabling- paraplegics-to-walk-360975.</ref> Vyvíjejí se záchranné roboty. Ty jsou v současnosti spíše prototypy ovládané na dálku lidskou obsluhou, ale lze odhadovat, že míra jejich samostatnosti do budoucna poroste.<ref name=":2" /> |
==Strojové vidění== | ==Strojové vidění== |
Verze z 14. 11. 2015, 08:58
Robotika se zabývá studiem a konstrukcí robotů a podobných zařízení. Čerpá z umělé inteligence, ale i mechaniky, elektrotechniky, teorie řízení, měřící techniky a dalších. Robotika bývá to první, co si většina lidí představí pod pojmem umělá inteligence.[1]
Obsah
Definice
Robot je stroj, který by měl být schopen manipulace s předměty a pohybu. Měl by být schopen získávat informace o svém prostředí a měl by ho být schopen sám ovlivňovat. Ne každý robot však tyto podmínky splňuje.[2] Mezinárodní organizace pro standardizaci definuje robota v normě ISO 8373 jako „automaticky řízený, opětovně programovatelný, víceúčelový manipulátor pro činnost ve třech nebo více osách, který může být buď upevněn na místě, nebo mobilní k užití v průmyslových automatických aplikacích“. [3]
Historie
Značný rozvoj robotů se rozpoutal v 60. letech převážně v USA. V roce 1968 vytvořil Stanfordský výzkumný institut SRI (Stanford Research Institute) robota Shakeyho, který byl do určité míry schopen orientace v prostředí. Modely robotů se dále zdokonalovaly a v 70. letech již vstoupily do masové výroby. První oblastí, kde našly uplatnění, byl automobilový průmysl. Tyto roboty prováděly činnosti jako svařování či lakování a jiné pro člověka nepříliš bezpečné operace. V 80. letech přebírá první místo ve využití robotů Japonsko. V této dekádě byly stroje vybavovány čidly hmatu a počítačovým viděním.
Roku 2000 představila Honda robota Asima a psího robota Aido. Tyto roboty se staly pop kulturními fenomény, ale od samostatně myslícího stroje dělí je a jejich následovníky ještě značná vzdálenost.[2] Nadějné výsledky výzkumu robotů exoskeletony - robotické kostry, které pomáhají handicapovaným v pohybu, se již začínají používat jako zdravotní pomůcky.[4] Vyvíjejí se záchranné roboty. Ty jsou v současnosti spíše prototypy ovládané na dálku lidskou obsluhou, ale lze odhadovat, že míra jejich samostatnosti do budoucna poroste.[3]
Strojové vidění
Ve vývoji robotů i jiných systémů hraje velikou roli jejich schopnost vnímat okolí. Tuto schopnost umožňuje strojové vidění. Strojové vidění lze rozložit na:
1. Získání digitálního obrazu scannerem, družicovým snímačem či kamerou - při převodu obrazu do digitální podoby vždy dochází ke ztrátě informací.
2. Úpravu digitálního obrazu. Úprava znamená použití různých filtrů a oprav
k odstranění šumů obrazu.
3. Rozložení na objekty neboli segmentace. Zde dochází k ohraničení objektů a tím k redukci dat.
4. Popis objektů. Objekty se dají popsat různými způsoby. Např. řetězovým kódem
(číselně popsaná pozice pixelu) či polygonální prezentací (popis pomocí vektorů).
5. Klasifikaci jednotlivých objektů. Určuje se do jaké třídy (typu ředkvička - zelenina
aj.) patří daný objekt. Např. za pomocí fuzzy logiky.
Skok ve strojovém vidění byl možný díky použití fraktální geometrie, jež zásadně zmenšuje velikost dat potřebnou k zaznamenání obrázku a práci s ním.[1]
Rozvoj se týká i strojového slyšení. Ovládání hlasem je dnes poměrně rozšířené a počítače dokážou čím dál lépe překonávat problémy v porozumění hlasu. Přestože porozumění mluvenému slovu není vždy zcela dokonalé, chybovost se i díky trénování na velikém objemu dat neustále snižuje. (Xuedong Huang et al. 2014, s. 100) Rozvíjí se také detekce pohybu a gest. Nejnověji se objevila možnost číst emoci podle pohybů svalů v obličeji. Přestože tato technologie ještě není dokonalá, objevují se etické otázky, zda takovýto výzkum nemůže přispět k narušování soukromí a jakým způsobem zabránit zneužití takových technologií. (Dormehl 2014)
Odkazy
Poděkování
Text byl převzat z diplomové práce
Reference
- ↑ 1,0 1,1 ZELINKA, Ivan. Umělá inteligence: hrozba nebo naděje? [online]. 1. vyd. Praha: BEN - technická literatura, 2003, 142 s. [cit. 2015-11-14]. ISBN 80-730-0068-7. Dostupné z: http://projekty.osu.cz/svp/opory/PrF_Volna%2CKotyrba_Umela-intelig.pdf.
- ↑ 2,0 2,1 ŠOLC, František a Luděk ŽALUD. Robotika [online]. 1. vyd. Brno: FEKT Vysoké technické učení v Brně, 2002, 142 s. [cit. 2015-11-14].
- ↑ 3,0 3,1 VOLNÁ, Eva a Martin KOTYRBA. Umělá inteligence [online]. Ostrava: Ostravská univerzita v Ostravě, 2013 [cit. 2015-11-14]. ISBN 978-80-7464-330-9. Dostupné z: http://projekty.osu.cz/svp/opory/PrF_Volna%2CKotyrba_Umela-intelig.pdf.
- ↑ SIEGEL, Judy. FDA approves Israel’s ReWalk device enabling paraplegics to walk. Jerusalem Post [online]. 2014. Dostupné z: http://www.jpost.com/Health-and-Science/FDA-approves-Israels-ReWalk-device-enabling- paraplegics-to-walk-360975.
Souvisejíci články
Umělá inteligence
Kybernetika
Fuzzy systémy
Klíčová slova
umělá inteligance, robot, stroj, elektrotechnika