Motýlí efekt
Motýlí efekt (též známý jako efekt motýlích křídel) je jev, kdy malé změny ve vstupních podmínkách tohoto jevu mohou způsobit velké rozdíly v konečném důsledku. Efekt bývá připodobňován k mávnutí křídel motýla, který tímto činem způsobí hurikán tisíce kilometrů od něj. Tento pojem poprvé použil meteorolog Edward Lorenz 29. Prosince 1979. Je to ústřední charakteristika pro teorii chaosu.[1]
Teorie chaosu
Teorie chaosu je teorie o nelineárních dynamických systémech, vykazují určitý vnitřní řád, který je velmi citlivý na počáteční podmínky. I když všechny vstupní rovnice jsou stoprocentně determinovány, jejich vzájemným působením dochází k jevu, o kterém nejsme schopni předpovědět vývoj situace, protože i malá změna na počátku může způsobit velký rozdíl ke konci situace. Toto chování je sice chaotické, avšak není nahodilé.[2] Teorii chaosu (znovu)založil E. Lorenz, kdy ji demonstroval na svém objevu, který se nazývá Podivný atraktor.
Atraktor
Nejznámější je Lorenzův podivný atraktor. Atraktor znamená konečný stav systému. E. Lorenz vzal a popsal pomocí několika jednoduchých rovnic chování vodního kola, které má místo lopatek děravé nádoby, do kterých přitéká voda a pohybuje s kolem. Lorenz očekával, že se kolo bude točit jedním směrem, anebo cyklicky měnit svůj směr, případně, že se zastaví. Vodní kolo je však nestabilní a nečekaně mění svůj směr otáčení, který se nedá předpovídat.Tyto data zadal do počítače, který znázornil graf. [3]Křivka ve grafu se nikdy neprotíná a je nekonečná. Existují také bodové a cyklické atraktory.
Fraktály
Fraktály je obrazec, ve kterém se opakuje podobný vzorec na různých úrovních. Když si fraktál rozdělíme a některé části zvětšíme, tak nalezneme podobnost mezi zmenšenou a velkou částí. Tento jev se nazývá soběpodobnost a je to charakteristická vlastnost pro chaotické systémy.[4] Tato podobnost není nikdy stejná, ale je si velmi podobná. Znamená to, Tytu struktury jsou si velmi podobné avšak nejsou nikdy stejné.[5]
Reference
- ↑ Ozdemir, O., Ozdemir, P. G., & Yilmaz, E. (2014). The Butterfly Effect in Psychiatry: A case example. Journal Of Mood Disorders, 4(1), 34-37. doi:10.5455/jmood.20131205063836
- ↑ Bussolari, C. J., & Goodell, J. A. (2009). Chaos Theory as a Model for Life Transitions Counseling: Nonlinear Dynamics and Life's Changes. Journal Of Counseling & Development, 87(1), 98-107.
- ↑ Sixta, T. (2014). Itnetwork.cz. Retrieved from: http://www.itnetwork.cz/fraktaly-a-chaos-pojednani-o-chaosu-a-atraktorech
- ↑ http://en.wikipedia.org/wiki/Fractal
- ↑ Vacík, P. (n.d.) Chaos: A co je za ním? (Excelentní studentská práce). VŠE. Retrieved from: http://nb.vse.cz/kfil/elogos/student/vaculik2.htm
.