Náhodná veličina

Verze z 19. 2. 2014, 21:58, kterou vytvořil Anna.Vojtiskova (diskuse | příspěvky) (Založena nová stránka: === Náhodná veličina === * Výsledky některých pokusů (elementární jevy) jsou přímo vyjádřeny číselně (padne 1), u jiných tomu tak není (padne líc). Ta…)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Náhodná veličina

  • Výsledky některých pokusů (elementární jevy) jsou přímo vyjádřeny číselně (padne 1), u jiných tomu tak není (padne líc). Také u těchto pokusů je účelné přiřadit elementárním jevům čísla.
  • Čísla přiřazená elementárním jevům tvoří obor hodnot M proměnné, kterou nazýváme náhodná veličina (označujeme X, Y, Z,...)

Definice náhodné veličiny

  • Náhodná veličina X je reálná funkce definovaná na množině všech elementárních jevů, která každému jevu přiřadí reálné číslo.
  • Např.: Hod mincí
Hod mincí
  • Podle oboru hodnot M rozdělujeme náhodné veličiny na:
  • diskrétní: obor hodnot M je konečná nebo nekonečná posloupnost
  • spojité: obor hodnot M je otevřený nebo uzavřený interval
Diskrétní náhodná veličina
  • Pravděpodobnostní funkce
  • Nechť X je diskrétní náhodná veličina s oborem možných hodnot {x1, x2, ..., en}, která tyto hodnoty nabývá s pravděpodobností {p1, p2, ..., pn}.
  • Údaje sestavíme do tabulky:
xi x1 x2 xn
px p1 p2 pn
  • Každé hodnotě xi je přiřazena právě jedna hodnota pi a pravděpodobnostní tabulku lze tedy chápat jako tabulkové určení funkce, kterou nazýváme pravděpodobnostní funkcí
  • Definice pravděpodobnostní funkce: Pravděpodobnostní funkcí náhodné veličiny X nazýváme funkci p(x) = P(X = x)