Základní principy transparentní intenzionální logiky P. Tichého (TIL)
Obsah
Transparentní intensionální logika
Transparentní intenzionální logika označovaná zkratkou "TIL" byla vytvořena českým logikem Pavlem Tichým a patří mezi nejvýznamnější teorie moderní filozofické logiky. Jisté základy uvedl již v roce 1968 ve stati Smysl a procedura (Filosofický časopis 16, 222-232). Systematizovanou podobu Tichý publikoval až v roce 1988 ve své knize "The Foundations of Frege ́s Logic". [1]
Transparentní intensionální logika patří mezi filozofické logiky a zasahuje také významně do modálních logik. Intensionální logika je kombinace lambda-kategoriální gramatiky s kripkovskou možnosvětovou sémantikou.
Základní pojmy a charakteristiky TIL
V příkladu jsme zmínili pojmy, které jsou základem TIL. Jedná se o pojem extenze a intenze.
extenze (intenze 0. řádu) – funkce z možných světů do kategorie. extenze výrazu jeho denotát a jeho rozsah; předmět nebo množina objektů , k nimž výraz odkazuje v reálném světě. [2] Př. extenze pojmu „kočka“ je souhrn všech možných koček;
intenze k. řádu (pro k>0 prostě „intenze“) – je-li T intezne k. řádu, pak funkce z možných světů do T je intezne (k+1). řádu. Jedná se obsah, který je smyslem daného pojmu.
Extensionální logika pracuje pouze s extenzemi. Při zavedení intenzí umožňuje pracovat s možnými světy. Např. tvrzení „teplota je 30 stupňů Celsia a stoupá“ nelze v extenzionální logice analyzovat jako (teplota=30)∧stoupá(teplota), protože z toho lze dokázat stoupá(30), což není význam tvrzení. Zde je tedy zapotřebí vyjádřit vztah aktuálního světa (teplota=30) se světem v relaci dostupnosti.[3]
Dalším důležitým pojmem v TIL je konstrukce. Jedná se o přirozené jazykové způsoby, jimiž jsou „zadány“ objekty. Např. výraz „3+3“ je konstrukcí aplikace sčítání na čísla 3 a 3. Výraz „Sokrates je smrtelný“ je aplikací významu výrazu „být smrtelný“ (vlastnost individuí) na význam výrazu „Sokrates“. Důležité je u TIL právě zavedení tzv. individuálních rolí, které některým možným světům a časovým okamžikům přiřazují jediné individuum a jiným vůbec žádné.
Pro funkcionální typy používá TIL notaci zprava doleva. (Montague používá na rozdíl od TIL pro funkcionální typy notaci zleva doprava)
TIL bývá často srovnáván s Montagueho intenzionální logikou
Využití v současnosti
V současné době má transparentní intenzionální logika nepostradatelný význam v informatice. Konkrétně v oblasti konceptuálního modelování v softwarovém inženýrství. V této oblasti je využívána pro formálně korektní transformaci uživatelských požadavků na datový model informačního systému. Transparentní intenzionální logika má uplatnění především v místech, kde je třeba analyzovat sémantiku, tedy význam tvrzení přirozeného jazyka se závislostí na možných světech.[1] Princip využití spočívá v převedení sémantiky na formule intenzionální logiky. Po takovémto převedení pak lze provádět různé operace při zachování sémantické korektnosti. [4]
Příklad:
Mějme čtveřici (B, T, U, W), tzv. epistémickou bázi
B je v tomto příkladu množina pravdivostních hodnot,
T množina časových okamžiků (používají se také jako reálná čísla)
U množina individuí
W množina možných světů (tzv. logický prostor, který je dán a priori).
Typ nad epistémickou bází je objekt určený prvky epistémické báze. Pak objekt P je:
- extenze (intenze 0. řádu) – pokud neexistuje Q nad epistémickou bází tak, že P=(W×T)⇒Q,
- intezne k. řádu (pro k>0) – je-li Q intezne (k-1). řádu a P=(W×T)⇒Q.
- Pro objekty nad epistémickou bází platí:
- třídy individuí = (U⇒B)-objekty = extenze,
- vlastnosti individuí = ((W×T×U)⇒B)-objekty = intenze,
- propozice = ((W×T)⇒B)-objekty = intenze,
- individuové úřady = ((W×T)⇒U)-objekty = intenze,
- veličiny = ((W×T)⇒T)-objekty = intenze,
- třídy vlastností = (((W×T×U)⇒B)⇒B)-objekty = extenze.
- třídy individuí: lidé, zaměstnanci, produkty, faktury atd.
- vlastnosti individuí: „být zaměstnancem“, „být oprávněným uživatelem“, „být proplacenou fakturou“
- propozice: „uživatel (Jan Novák) vystavil k datu (1.3.2019 ) fakturu (127/2019)“
- individuové úřady = „jednatel dané společnosti“
- veličiny = „mzda daného zaměstnance za daný měsíc“
- třídy individuí: lidé, zaměstnanci, produkty, faktury atd.
- vlastnosti individuí: „být zaměstnancem“, „být oprávněným uživatelem“, „být proplacenou fakturou“
- propozice: „uživatel (Jan Novák) vystavil k datu (1.3.2019 ) fakturu (127/2019)“
- individuové úřady = „jednatel dané společnosti“
- veličiny = „mzda daného zaměstnance za daný měsíc“
- třídy vlastností = položky tvořící adresu zaměstnance.
Reference
- ↑ 1,0 1,1 Duží, M. Materna,P. TIL jako procedurální logika (2012) [1]
- ↑ https://www.czechency.org/slovnik/EXTENZE
- ↑ Transparentní intenzionální logika http://www.fit.vutbr.cz/~rychly/public/docs/til/til.pdf
- ↑ Duží, M. Konceptuální modelování datový model HIT (2000)
Doporučená literatura
- DUŽÍ, M. ( 2000). Konceptuální modelování - datový model HIT. Filozoficko-přírodovědecká fakulta, Slezská universita Opava. Opava.
- MATERNA, P. (1995): Svět pojmů a logika. Praha: Filosofia.
- RACLAVSKÝ, J. (2006). Předmět Filosofická logika. Studijní materiály. Masarykova univerzita v Brně, Filozofická fakulta. Brno. URL [http://www.phil.muni.cz/fil/logika/filoslogika.php].
- SVOBODA, V. ed.: (2010): Logika a přirozený jazyk. Praha: Filosofia.
- TICHÝ, P. (1988): The Foundations of Frege ́s Logic. De Gruyter, Berlin, NewYork.
Klíčová slova
filozofická logika, modální logika, teorie možných světů, extenzionální model, lambda-kate- goriální gramatika, transparentní intenzionální logika