Inzulín: Porovnání verzí

Řádek 1: Řádek 1:
=== <big></big>'''Zařazení Inzulínu''' ===
+
== <big></big>'''Zařazení Inzulínu''' ==
  
 
Inzulín je hormonem slinivky břišní. Slinivka břišní (Pancreas), je smíšenou žlázou s exokrinní (pars exocrina pancreatis) a endokrinní (pars endocrina pancreatis) částí. Exokrinní část pankreatu produkuje pankreatickou trávicí šťávu. <ref>Přidalová, M., Riegrová, J. (2009). Funkční anatomie II.  (1. vyd., s. 93). Olomouc: Hanex.</ref> Endokrinní část je tvořena asi 1-2 miliony drobných, 0,1-0,5 mm velkých, buněčných okrsků, označovaných jako Langerhansovy ostrůvky, které jsou roztroušeny v exokrinní tkáni pankreatu. Langerhansovy ostrůvky tvoří asi 1,5 % objemu celé slinivky břišní. <ref>Čihák, R. (2013) Anatomie II. (3. vyd., s. ). Praha: Grada.</ref> Langerhansovy ostrůvky tvoří a uvolňují hormony do krevního řečiště a skládají se ze 4 typů sekrečních buněk. <ref>Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (?. vyd., s. ). Praha: Grada.</ref>
 
Inzulín je hormonem slinivky břišní. Slinivka břišní (Pancreas), je smíšenou žlázou s exokrinní (pars exocrina pancreatis) a endokrinní (pars endocrina pancreatis) částí. Exokrinní část pankreatu produkuje pankreatickou trávicí šťávu. <ref>Přidalová, M., Riegrová, J. (2009). Funkční anatomie II.  (1. vyd., s. 93). Olomouc: Hanex.</ref> Endokrinní část je tvořena asi 1-2 miliony drobných, 0,1-0,5 mm velkých, buněčných okrsků, označovaných jako Langerhansovy ostrůvky, které jsou roztroušeny v exokrinní tkáni pankreatu. Langerhansovy ostrůvky tvoří asi 1,5 % objemu celé slinivky břišní. <ref>Čihák, R. (2013) Anatomie II. (3. vyd., s. ). Praha: Grada.</ref> Langerhansovy ostrůvky tvoří a uvolňují hormony do krevního řečiště a skládají se ze 4 typů sekrečních buněk. <ref>Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (?. vyd., s. ). Praha: Grada.</ref>
Řádek 8: Řádek 8:
 
Středem každého ostrůvku potom prochází kapilára, do jejiž krve se přímo vylučují vytvořené hormony. <ref>Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (?. vyd., s. ). Praha: Grada.</ref>
 
Středem každého ostrůvku potom prochází kapilára, do jejiž krve se přímo vylučují vytvořené hormony. <ref>Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (?. vyd., s. ). Praha: Grada.</ref>
  
=== '''Charakteristika Inzulínu'''<big></big> ===
+
== <big></big>'''Charakteristika Inzulínu''' ==
  
 
Lidský Inzulín je proteohormon, složený z 51 aminokyselin. Aminokyseliny Inzulínu jsou organizovány do dvou polypeptidových řetězců A a B, navzájem spojených dvěma disulfidickými můstky. gen pro Inzulín je kódován na 11. chromozomu. <ref>Piťhová, P., & Štechová, K. (2009). Léčba inzulínovou pumpou pro praxi (?. vyd., s. ). Semily: Geum.</ref>
 
Lidský Inzulín je proteohormon, složený z 51 aminokyselin. Aminokyseliny Inzulínu jsou organizovány do dvou polypeptidových řetězců A a B, navzájem spojených dvěma disulfidickými můstky. gen pro Inzulín je kódován na 11. chromozomu. <ref>Piťhová, P., & Štechová, K. (2009). Léčba inzulínovou pumpou pro praxi (?. vyd., s. ). Semily: Geum.</ref>
  
 +
== <big></big>'''Mechanismus Inzulínu''' ==
  
 
=== <big></big>'''Vznik Inzulínu''' ===
 
=== <big></big>'''Vznik Inzulínu''' ===
Řádek 33: Řádek 34:
 
# Dochází ke znovuotevření draslíkových kanálů  
 
# Dochází ke znovuotevření draslíkových kanálů  
 
# Repolarizace B-buňky (návrat do výchozího stavu)<ref>Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (?. vyd., s. 282). Germany: Wemding.</ref>
 
# Repolarizace B-buňky (návrat do výchozího stavu)<ref>Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (?. vyd., s. 282). Germany: Wemding.</ref>
 +
 +
=== '''Působení inzulínu'''<big></big> ===
 +
 +
  
 
=== '''Odbourávání inzulínu'''<big></big> ===
 
=== '''Odbourávání inzulínu'''<big></big> ===
  
 
Poločas Inzulínu je 5-8 minut, přičemž je odbouráván hlavně v játrech a ledvinách. <ref>Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (?. vyd., s. 282). Germany: Wemding.</ref>
 
Poločas Inzulínu je 5-8 minut, přičemž je odbouráván hlavně v játrech a ledvinách. <ref>Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (?. vyd., s. 282). Germany: Wemding.</ref>

Verze z 29. 11. 2014, 10:57

Zařazení Inzulínu

Inzulín je hormonem slinivky břišní. Slinivka břišní (Pancreas), je smíšenou žlázou s exokrinní (pars exocrina pancreatis) a endokrinní (pars endocrina pancreatis) částí. Exokrinní část pankreatu produkuje pankreatickou trávicí šťávu. [1] Endokrinní část je tvořena asi 1-2 miliony drobných, 0,1-0,5 mm velkých, buněčných okrsků, označovaných jako Langerhansovy ostrůvky, které jsou roztroušeny v exokrinní tkáni pankreatu. Langerhansovy ostrůvky tvoří asi 1,5 % objemu celé slinivky břišní. [2] Langerhansovy ostrůvky tvoří a uvolňují hormony do krevního řečiště a skládají se ze 4 typů sekrečních buněk. [3]

  • A-buňky produkují hormon Glukagon (svým účinkem je antagonistou Inzulínu)
  • B-buňky produkují hormon Inzulín
  • D-buňky produkují hormon Somatostatin (snižuje produkci Inzulínu i Glukagonu)
  • F-buňky produkují Pankreatický polypeptid (jeho funkce je zatím nejasná)[4]

Středem každého ostrůvku potom prochází kapilára, do jejiž krve se přímo vylučují vytvořené hormony. [5]

Charakteristika Inzulínu

Lidský Inzulín je proteohormon, složený z 51 aminokyselin. Aminokyseliny Inzulínu jsou organizovány do dvou polypeptidových řetězců A a B, navzájem spojených dvěma disulfidickými můstky. gen pro Inzulín je kódován na 11. chromozomu. [6]

Mechanismus Inzulínu

Vznik Inzulínu

Inzulín se tvoří právě v B-buňkách, které představují zhruba 60 % buněk Langerhansových ostrůvků. Samotná tvorba potom probíhá v ribozomech (vznik preprohormonu) a v endoplazmatickém retikulu (vznik prohormonu Proinzulínu). Dále se v Golgiho aparátu vytvořený Inzulín s fragmenty peptidů zabuduje do sekrečních váčků, odkud je spolu s malým množstvím Proinzulínu (který nemá biologický účinek) vylučován do krve. [7]


Regulace sekrece Inzulínu

Inzulín se uvolňuje v tzv. pulzních dávkách, avšak trvale po celých 24 hodin denně. Důvod, proč se Inzulín uvolňuje trvale je potřeba udržení citlivosti inzulínového receptoru a potlačení jaterní glukoneogeneze v podmínkách nalačno. Hlavním sekretagonem Inzulínu je glukóza, jejíž koncentrace v hodnotách 5,5-17,0 mmol/l krve vyvolá účinnou sekreci Inzulínu. [8] Tedy hlavním podnětem pro sekreci Inzulínu je zvýšení glykémie. [9] Po jídle začíná stoupat sekreci Inzulínu již do 10 minut. [10] Stimulace B-buněk k vyloučení inzulínu probíhá v tomto sledu:

  1. Vzrůst plazmatické glukózy
  2. Nárust glukózy v B-buňce pankreatu (Langerhansových ostrůvků)
  3. Zrychluje se oxidace již zvýšené hladiny glukózy v B-buňkách
  4. To vede k nárustu koncentrace ATP v B-buňce
  5. ATP-řízené draslíkové kanály se zavírají
  6. Nastává depolarizace B-buňky
  7. Potenciálem řízené vápníkové kanály se otevírají
  8. Vzrůstá koncentrace vápníkových iontů v B-buňce
  9. Nárust vápníkových iontů v B-buňce vyvolá exocytózu Inzulínu
  10. Dochází ke znovuotevření draslíkových kanálů
  11. Repolarizace B-buňky (návrat do výchozího stavu)[11]

Působení inzulínu

Odbourávání inzulínu

Poločas Inzulínu je 5-8 minut, přičemž je odbouráván hlavně v játrech a ledvinách. [12]

  1. Přidalová, M., Riegrová, J. (2009). Funkční anatomie II. (1. vyd., s. 93). Olomouc: Hanex.
  2. Čihák, R. (2013) Anatomie II. (3. vyd., s. ). Praha: Grada.
  3. Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (?. vyd., s. ). Praha: Grada.
  4. Patton, K. & Thibodeau, G. (2010). Anatomy & physiology (?. vyd., s. ). USA.
  5. Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (?. vyd., s. ). Praha: Grada.
  6. Piťhová, P., & Štechová, K. (2009). Léčba inzulínovou pumpou pro praxi (?. vyd., s. ). Semily: Geum.
  7. Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (?. vyd., s. ). Praha: Grada.
  8. Piťhová, P., & Štechová, K. (2009). Léčba inzulínovou pumpou pro praxi (?. vyd., s. ). Semily: Geum.
  9. Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (?. vyd., s. 282). Germany: Wemding.
  10. Kittnar, O., Jandová, K., Kariščák, E., Langmeier, M., Marešová, D., Mlček, M., Mysliveček, J., Pokorný, J., Riljak, V., & Trojan, S. (2011). Lékařská fyziologie. (?. vyd., s. ). Praha: Grada.
  11. Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (?. vyd., s. 282). Germany: Wemding.
  12. Despopoulos, A., & Silbernagl, S. (2003). Color atlas of physiology (?. vyd., s. 282). Germany: Wemding.