Expertní systém: Porovnání verzí

Řádek 36: Řádek 36:
 
(uzij_500mg_paralen AND jdi_do_postele).
 
(uzij_500mg_paralen AND jdi_do_postele).
  
===Inference===
+
===Inferenční mechanismus===
 +
Interferenční mechanizmus obsahuje myšlenkové, usuzovací, odvozovací algoritmy - vlastní program, který na základě znalostí modifikuje bázi faktů tak, aby byl schopen najít požadované výsledky. Interferenční mechanizmus umožňuje:
 +
* Odvozování nových poznatků
 +
* Prohledávání báze znalostí
 +
* Zpracování neurčitostí (nepřesností, nekompletností, nekonzistenci dat, vágní pojmy, nejisté znalosti)
 +
* Dedukce
 +
* Indukce
 +
* Abdukce (ze správných závěrů hledá předpoklady, které k těmto závěrům vedly)
 +
* Heuristiky (závěry na zkušenostech)
 +
* Intuice
 +
* Vysvětlovací modul
 +
* Modul pro získávání znalostí
 +
* Modul pro vazby na jiné systémy
  
 
==Nepravidlové expertní systémy==
 
==Nepravidlové expertní systémy==

Verze z 8. 6. 2021, 07:21

Stránka ve výstavbě
Inkwell icon - Noun Project 2512.svg Na této stránce se právě pracuje. Prosím needitujte tuto stránku, dokud na ní zůstává tato šablona. Předejdete tak editačnímu konfliktu. Jestliže uběhla od poslední editace doba alespoň dvou dnů, neváhejte tuto šablonu odstranit. Inkwell icon - Noun Project 2512.svg

Podle E. Feigenbauma (americký informatik, který je často označován za otce expertních systémů) je expertní systém inteligentní počítačový program, který užívá znalosti a inferenční procedury k řešení problémů, které jsou natolik obtíné, že pro své řešení vyžadují významnou lidskou expertízu. Jedná se tedy o počítačový program simulující rozhodovací činnost lidského experta při řešení složitých úloh a využívájící vhodně zakódovaných speciálních znalostí převzatých od experta s cílem dosáhnout ve zvolené problémové oblasti kvality rozhodování na úrovni experta. Expertní systémy jsou jedním z oborů umělé inteligence a objevily se v 70. letech 20. století. V praxi jsou využívány například jako aplikace pomocného charakteru. Často tak slouží pro nalezení rozhodnutí, ke kterému by uživatel dospěl sám za delší čas, nebo jako "návrh" navazujících procesů, aby uživatel na něco nezapomněl. V rámci expertních systémů uživatel jasně ví, proč se systém rozhodl právě tak, jak se rozhodl a navíc má možnost si systém upravit dle svých představ. Můžeme jej považovat za informační systémy, které podle zadání automaticky usuzují na základě formalizovaných znalostí v konkrétní problémové oblasti a poskytují své závěry (nové informace týkající se daného problému). Expertní systém je tvořen bází znalostí a inferenčním mechanismem. Inferenční mechanismus slouží k tomu, aby informovali o průběhu inference a jednotlivé kroky podrobně objasnili. Jedině tak je možné přijmou jejich závěry. Vysvětlení předkládají ve formě vhodné pro uživatele a v rozsahu, který si uživatel určí. [1]

Charakteristické rysy expertních systémů:

  • Oddělení znalostí a mechanismu pro jejich využívání
  • Neurčitost v bázi znalostí
  • Neurčitost v datech
  • Dialogový režim
  • Vysvětlovací činnost
  • Modularita a transparentnost báze znalostí

Požadavky na expertní systémy:

  • vysoká spolehlivost
  • přiměřená doba odezvy
  • stabilita
  • srozumitelnost
  • flexibilita [1]

Výhody expertního systému

  • schopnost řešit složité problémy,
  • schopnost řešit nepřesně zadané problémy,
  • dostupnost expertíz a jejich opakované využití,
  • uchovávání znalostína delší dobu [2]

Nevýhody expertního systému

  • možnost nesprávné interpretace ve změněných podmínkách a poznat meze své použitelnosti. [2]


Fungování expertního systému

Pravidlové expertní systémy

Výhodou pravidlových expertních systémů je modularita (neboli jednoznačné é vyjádření dané znalosti pravidlem a možnost snadného rozšiřování této sady pravidel), jednoduchost interpretace a podobnost usuzování s člověkem. Mezi problém ovšem patří zejména jejich použitelnost jen pro jednodušší problémy, které jsou snadno převoditelné do přijatelného množství pravidel, nebezpečí cyklů anebo nepříliš efektivní algoritmy pro stronávání pravidel a prohledávání prostoru.

Reprezentace znalostí

V pravidlových expertních systémech jsou znalosti reprezentovány databází pravidel. Pravidlové expertní systémy jsou založeny na principu splnění platnosti nějakého předpokladu a generování z něj plynoucích závěrů. Aplikují pravidla typu jestliže -> pak, předpoklad -> konsekvence (akce, závěr, důsledek). Příkladem může být: IF (zvysena_teplota_nad_38 OR bolest_hlavy) THEN (uzij_500mg_paralen AND jdi_do_postele).

Inferenční mechanismus

Interferenční mechanizmus obsahuje myšlenkové, usuzovací, odvozovací algoritmy - vlastní program, který na základě znalostí modifikuje bázi faktů tak, aby byl schopen najít požadované výsledky. Interferenční mechanizmus umožňuje:

  • Odvozování nových poznatků
  • Prohledávání báze znalostí
  • Zpracování neurčitostí (nepřesností, nekompletností, nekonzistenci dat, vágní pojmy, nejisté znalosti)
  • Dedukce
  • Indukce
  • Abdukce (ze správných závěrů hledá předpoklady, které k těmto závěrům vedly)
  • Heuristiky (závěry na zkušenostech)
  • Intuice
  • Vysvětlovací modul
  • Modul pro získávání znalostí
  • Modul pro vazby na jiné systémy

Nepravidlové expertní systémy

V nepravidlových expertních systémech nejsou znalosti reprezentovány sadou pravidel, ale jsou uloženy v jiné podobě. Nejčastěji se jedná o reprezentaci znalostí pomocí sémantických sítí či rámců a objektů a vtahů mezi nimi. [3]

Sémantické sítě

Sémantická síť je reprezentována obousměrně orientovaným grafem, který reprezentuje znalosti expertního systému. Uzly reprezentují jednotlivé objekty modelu a hrany reprezentují relace mezi nimi. Veškeré znalosti jsou tedy rozprostřeny do jedné síťové úrovně. Hlavní výhodou sémantických sítí je jejich přehledné vyjádření a snadné vyhledávání. Nevýhodou jsou naopak nestandardizované vztahy mezi objekty, které mohou vést na různé způsoby jejich interpretace. [3]

Rámce

Rámce vycházejí z představy, že lidé pro řešení nové situace využívají podobnosti s již známými schématy (jinými slovy hledají na základě analogie stereotypní řešení situace pouze s pozměněnými vstupními podmínkami). Rámce lze reprezentovat analogicky k datovému typu záznam procedurálních jazyků, kde jednotlivá pole záznamu se u rámců nazývají sloty a hodnoty těchto polí pak náplně. Náplní mohou být i další rámce či speciální procedury. Rámce mohou být obecné i konkrétní. [3]

Odkazy

Reference

  1. 1,0 1,1 IVÁNEK, Jiří. Stručně o zpracování znalostí v expertních systémech. [online]. Univerzita Karlova v Praze, Filozofická fakulta, Ústav informačních studií a knihovnictví. [cit. 2021-06-07]. Dostupné z: https://dl1.cuni.cz/pluginfile.php/1141880/mod_resource/content/1/ZZ2.pdf
  2. 2,0 2,1 Expertní systémy. Moodle - Střední průmyslová škola Brno [online]. Brno[cit. 2021-06-07]. Dostupné z: https://moodle.sspbrno.cz/pluginfile.php/6959/mod_resource/content/1/expertn%C3%AD%20syst%C3%A9my.pdf
  3. 3,0 3,1 3,2 Úvod do znalostního inženýrství. Katedra informatiky a výpočetní techniky [online]. [cit. 2021-06-07]. Dostupné z: https://www.kiv.zcu.cz/studies/predmety/uzi/Literatura/Expertni_systemy3.pdf

Doporučená literatura

  • Aplikace umělé inteligence AI '89: sborník referátů: Palác kultury 24.-26. dubna 1989. Vyd. 1. Praha: Ústav pro informační systémy v kultuře, 1989. 368 s. ISBN 80-02-99113-3.
  • Berka, Petr a kol. Expertní systémy. Vyd. 1. V Praze: Vysoká škola ekonomická, Fakulta informatiky a statistiky, 1998. 160 s. ISBN 80-7079-873-4.
  • Prax, Petr, ed. et al. Expertní systém pro vyhodnocování spolehlivosti a rizik městského odvodnění: sborník přednášek ze semináře konaného dne 27. ledna 2004. Brno: CERM, 2004. 96 s. ISBN 80-7204-329-3.
  • Provazník, Ivo a Bardoňová, Jana. Expertní systémy: praktická cvičení. Vyd. 1. V Brně: Vysoké učení technické, Fakulta elektrotechniky a informatiky, 2000. 49 s. ISBN 80-214-1768-4.
  • Valenta, Jan. Automatické ladění vah pravidlových bází znalostí = Automated weight tuning for rule-based knowledge bases: zkrácené znění doktorské práce. [V Brně: Vysoké učení technické], ©2009. 31 s. Vědecké spisy Vysokého učení technického v Brně. PhD Thesis, sv. 566. ISBN 978-80-214-4023-4.

Související články

Klíčová slova

expertní systém, umělá inteligence, báze znalostí, inferenční mechanismus, počítačový program