Expertní systém: Porovnání verzí
Řádek 1: | Řádek 1: | ||
{{Pracuje se}} | {{Pracuje se}} | ||
− | Podle E. Feigenbauma je expertní systém inteligentní počítačový program, který užívá znalosti a inferenční procedury k řešení problémů, které jsou natolik obtíné, že pro své řešení vyžadují významnou lidskou expertízu. Jedná se tedy o počítačový program simulující rozhodovací činnost lidského experta při řešení složitých úloh a využívájící vhodně zakódovaných speciálních znalostí převzatých od experta s cílem dosáhnout ve zvolené problémové oblasti kvality rozhodování na úrovni experta. Expertní systémy jsou jedním z oborů umělé inteligence a objevily se v 70. letech 20. století. V praxi jsou využívány například jako aplikace pomocného charakteru. Často tak slouží pro nalezení rozhodnutí, ke kterému by uživatel dospěl sám za delší čas, nebo jako "návrh" navazujících procesů, aby uživatel na něco nezapomněl. V rámci expertních systémů uživatel jasně ví, proč se systém rozhodl právě tak, jak se rozhodl a navíc má možnost si systém upravit dle svých představ. | + | Podle E. Feigenbauma je expertní systém inteligentní počítačový program, který užívá znalosti a inferenční procedury k řešení problémů, které jsou natolik obtíné, že pro své řešení vyžadují významnou lidskou expertízu. Jedná se tedy o počítačový program simulující rozhodovací činnost lidského experta při řešení složitých úloh a využívájící vhodně zakódovaných speciálních znalostí převzatých od experta s cílem dosáhnout ve zvolené problémové oblasti kvality rozhodování na úrovni experta. Expertní systémy jsou jedním z oborů umělé inteligence a objevily se v 70. letech 20. století. V praxi jsou využívány například jako aplikace pomocného charakteru. Často tak slouží pro nalezení rozhodnutí, ke kterému by uživatel dospěl sám za delší čas, nebo jako "návrh" navazujících procesů, aby uživatel na něco nezapomněl. V rámci expertních systémů uživatel jasně ví, proč se systém rozhodl právě tak, jak se rozhodl a navíc má možnost si systém upravit dle svých představ. Můžeme jej považovat za informační systémy, které podle zadání automaticky usuzují na základě formalizovaných znalostí v konkrétní problémové oblasti a poskytují své závěry (nové informace týkající se daného problému). Expertní systém je tvořen bází znalostí a inferenčním mechanismem. Inferenční mechanismus slouží k tomu, aby informovali o průběhu inference a jednotlivé kroky podrobně objasnili. Jedině tak je možné přijmou jejich závěry. Vysvětlení předkládají ve formě vhodné pro uživatele a v rozsahu, který si uživatel určí. <ref name="ivááánek">IVÁNEK, Jiří. Stručně o zpracování znalostí v expertních systémech. [online]. Univerzita Karlova v Praze, Filozofická fakulta, Ústav informačních studií a knihovnictví. [cit. 2021-06-07]. Dostupné z: https://dl1.cuni.cz/pluginfile.php/1141880/mod_resource/content/1/ZZ2.pdf</ref> |
+ | |||
+ | '''Charakteristické rysy expertních systémů:''' | ||
+ | * Oddělení znalostí a mechanismu pro jejich využívání | ||
+ | * Neurčitost v bázi znalostí | ||
+ | * Neurčitost v datech | ||
+ | * Dialogový režim | ||
+ | * Vysvětlovací činnost | ||
+ | * Modularita a transparentnost báze znalostí | ||
+ | |||
+ | '''Požadavky na expertní systémy:''' | ||
+ | * vysoká spolehlivost | ||
+ | * přiměřená doba odezvy | ||
+ | * stabilita | ||
+ | * srozumitelnost | ||
+ | * flexibilita <ref name="ivááánek">IVÁNEK, Jiří. Stručně o zpracování znalostí v expertních systémech. [online]. Univerzita Karlova v Praze, Filozofická fakulta, Ústav informačních studií a knihovnictví. [cit. 2021-06-07]. Dostupné z: https://dl1.cuni.cz/pluginfile.php/1141880/mod_resource/content/1/ZZ2.pdf</ref> | ||
− | |||
'''Výhody expertního systému''' | '''Výhody expertního systému''' | ||
* schopnost řešit složité problémy, | * schopnost řešit složité problémy, |
Verze z 7. 6. 2021, 13:02
Na této stránce se právě pracuje. Prosím needitujte tuto stránku, dokud na ní zůstává tato šablona. Předejdete tak editačnímu konfliktu. Jestliže uběhla od poslední editace doba alespoň dvou dnů, neváhejte tuto šablonu odstranit. |
Podle E. Feigenbauma je expertní systém inteligentní počítačový program, který užívá znalosti a inferenční procedury k řešení problémů, které jsou natolik obtíné, že pro své řešení vyžadují významnou lidskou expertízu. Jedná se tedy o počítačový program simulující rozhodovací činnost lidského experta při řešení složitých úloh a využívájící vhodně zakódovaných speciálních znalostí převzatých od experta s cílem dosáhnout ve zvolené problémové oblasti kvality rozhodování na úrovni experta. Expertní systémy jsou jedním z oborů umělé inteligence a objevily se v 70. letech 20. století. V praxi jsou využívány například jako aplikace pomocného charakteru. Často tak slouží pro nalezení rozhodnutí, ke kterému by uživatel dospěl sám za delší čas, nebo jako "návrh" navazujících procesů, aby uživatel na něco nezapomněl. V rámci expertních systémů uživatel jasně ví, proč se systém rozhodl právě tak, jak se rozhodl a navíc má možnost si systém upravit dle svých představ. Můžeme jej považovat za informační systémy, které podle zadání automaticky usuzují na základě formalizovaných znalostí v konkrétní problémové oblasti a poskytují své závěry (nové informace týkající se daného problému). Expertní systém je tvořen bází znalostí a inferenčním mechanismem. Inferenční mechanismus slouží k tomu, aby informovali o průběhu inference a jednotlivé kroky podrobně objasnili. Jedině tak je možné přijmou jejich závěry. Vysvětlení předkládají ve formě vhodné pro uživatele a v rozsahu, který si uživatel určí. [1]
Charakteristické rysy expertních systémů:
- Oddělení znalostí a mechanismu pro jejich využívání
- Neurčitost v bázi znalostí
- Neurčitost v datech
- Dialogový režim
- Vysvětlovací činnost
- Modularita a transparentnost báze znalostí
Požadavky na expertní systémy:
- vysoká spolehlivost
- přiměřená doba odezvy
- stabilita
- srozumitelnost
- flexibilita [1]
Výhody expertního systému
- schopnost řešit složité problémy,
- schopnost řešit nepřesně zadané problémy,
- dostupnost expertíz a jejich opakované využití,
- uchovávání znalostína delší dobu [2]
Nevýhody expertního systému
- možnost nesprávné interpretace ve změněných podmínkách a poznat meze své použitelnosti. [2]
Obsah
Fungování expertního systému
Pravidlové expertní systémy
Reprezentace znalostí
Nepravidlové expertní systémy
V nepravidlových expertních systémech nejsou znalosti reprezentovány sadou pravidel, ale jsou uloženy v jiné podobě. Nejčastěji se jedná o reprezentaci znalostí pomocí sémantických sítí či rámců a objektů a vtahů mezi nimi. [3]
Sémantické sítě
Odkazy
Reference
- ↑ 1,0 1,1 IVÁNEK, Jiří. Stručně o zpracování znalostí v expertních systémech. [online]. Univerzita Karlova v Praze, Filozofická fakulta, Ústav informačních studií a knihovnictví. [cit. 2021-06-07]. Dostupné z: https://dl1.cuni.cz/pluginfile.php/1141880/mod_resource/content/1/ZZ2.pdf
- ↑ 2,0 2,1 Expertní systémy. Moodle - Střední průmyslová škola Brno [online]. Brno[cit. 2021-06-07]. Dostupné z: https://moodle.sspbrno.cz/pluginfile.php/6959/mod_resource/content/1/expertn%C3%AD%20syst%C3%A9my.pdf
- ↑ Úvod do znalostního inženýrství. Katedra informatiky a výpočetní techniky [online]. [cit. 2021-06-07]. Dostupné z: https://www.kiv.zcu.cz/studies/predmety/uzi/Literatura/Expertni_systemy3.pdf
Doporučená literatura
- Aplikace umělé inteligence AI '89: sborník referátů: Palác kultury 24.-26. dubna 1989. Vyd. 1. Praha: Ústav pro informační systémy v kultuře, 1989. 368 s. ISBN 80-02-99113-3.
- Berka, Petr a kol. Expertní systémy. Vyd. 1. V Praze: Vysoká škola ekonomická, Fakulta informatiky a statistiky, 1998. 160 s. ISBN 80-7079-873-4.
- Prax, Petr, ed. et al. Expertní systém pro vyhodnocování spolehlivosti a rizik městského odvodnění: sborník přednášek ze semináře konaného dne 27. ledna 2004. Brno: CERM, 2004. 96 s. ISBN 80-7204-329-3.
- Provazník, Ivo a Bardoňová, Jana. Expertní systémy: praktická cvičení. Vyd. 1. V Brně: Vysoké učení technické, Fakulta elektrotechniky a informatiky, 2000. 49 s. ISBN 80-214-1768-4.
- Valenta, Jan. Automatické ladění vah pravidlových bází znalostí = Automated weight tuning for rule-based knowledge bases: zkrácené znění doktorské práce. [V Brně: Vysoké učení technické], ©2009. 31 s. Vědecké spisy Vysokého učení technického v Brně. PhD Thesis, sv. 566. ISBN 978-80-214-4023-4.
Související články
- Kybernetika
- Umělá inteligence
- Fuzzy systémy
- Turingův test
- Sémantická síť
- Reprezentace znalostí
- Robotika
- Metody dobývání znalostí z databází (data mining)
- Produkční systém