Booleova algebra: Porovnání verzí
Řádek 18: | Řádek 18: | ||
Stoneova dualita, pojmenovaná po [[Marshall Stone|Marshallu Stoneovi]] dává do souvislosti Booleovy algebry a kompaktní totálně nesouvislé [[Topologický prostor|topologické prostory]]. | Stoneova dualita, pojmenovaná po [[Marshall Stone|Marshallu Stoneovi]] dává do souvislosti Booleovy algebry a kompaktní totálně nesouvislé [[Topologický prostor|topologické prostory]]. | ||
− | ==Formule a zákony platné v Booleově algebře== | + | == Formule a zákony platné v Booleově algebře== |
<math>a \leq b \equiv a \wedge b = a \equiv a \vee b = b</math><br /> | <math>a \leq b \equiv a \wedge b = a \equiv a \vee b = b</math><br /> | ||
<math>a - b \equiv a \wedge -b</math><br /> | <math>a - b \equiv a \wedge -b</math><br /> | ||
Řádek 25: | Řádek 25: | ||
<math>a \leq b \leftrightarrow -b \leq -a</math><br /> | <math>a \leq b \leftrightarrow -b \leq -a</math><br /> | ||
− | ===Zákon idempotence===<math>a \wedge a = a</math><br/><math>a \vee a = a</math>===Zákon pohlcení===<math>a \wedge (a \vee b) = a</math><br/><math>a \vee (a \wedge b) = a</math> | + | === Zákon idempotence=== |
+ | <math>a \wedge a = a</math><br/><math>a \vee a = a</math>===Zákon pohlcení===<math>a \wedge (a \vee b) = a</math><br/><math>a \vee (a \wedge b) = a</math> | ||
− | ===Zákony de Morganovy=== | + | === Zákony de Morganovy=== |
<math>-(a \wedge b) = -a \vee -b</math><br /><math>-(a \vee b) = -a \wedge -b</math><br /><br /> | <math>-(a \wedge b) = -a \vee -b</math><br /><math>-(a \vee b) = -a \wedge -b</math><br /><br /> | ||
− | ===Monotonie=== | + | === Monotonie=== |
Jestliže <math>a_1 < a_2</math> a <math>b_1 < b_2</math>, pak v každé Booleově algebře platí:<br /> | Jestliže <math>a_1 < a_2</math> a <math>b_1 < b_2</math>, pak v každé Booleově algebře platí:<br /> | ||
<math>a_1 \vee b_1 \leq a_2 \vee b_2</math><br /> | <math>a_1 \vee b_1 \leq a_2 \vee b_2</math><br /> |
Verze z 9. 11. 2014, 23:07
Booleova algebra, nazvaná podle irského matematika George Boolea, je struktura , kde je neprázdný nosič, jsou binární operátory, 0 je nejmenší a 1 největší prvek, je unární operátor na B a platí axiomy:
asociativita
komutativita
distributivita
komplementarita
absorpce
nedegenerovanost
Poslední z uvedených axiomů způsobuje, že triviální svaz tvořený jednoprvkovou množinou (0 = 1) není BA.
Booleova algebra je distributivní komplementární svaz, tedy pro každý prvek z nosiče existuje právě jeden jeho komplement (doplněk) takový, který splňuje . Uvedené operace, tedy průsek, spojení a operaci pro doplněk, označujeme jako booleovská operace.
Obsah
Dualita operací
Algebraická dualita
Máme-li formuli v jazyce , pak její dualitu vytvoříme tak, že nahradíme za , za ,1 za 0 a 0 za 1. Je-li tedy Booleova algebra, pak je Booleova algebra i . Formule platí v každé BA, jestliže v každé BA platí její dualita . Stačí nám tedy dokazovat jen polovinu vět, zbytek dostaneme díky této vlastnosti.
Stoneova dualita
Stoneova dualita, pojmenovaná po Marshallu Stoneovi dává do souvislosti Booleovy algebry a kompaktní totálně nesouvislé topologické prostory.
Formule a zákony platné v Booleově algebře
(symetrický rozdíl)
Zákon idempotence
===Zákon pohlcení===
Zákony de Morganovy
Monotonie
Jestliže a , pak v každé Booleově algebře platí:
Isomorfismus BA
Dvě Booleovy algebry a jsou isomorfní (značíme ) právě tehdy, když a jsou isomorfní jako uspořádání.
Podalgebra
Každá podalgebra Booleovy algebry je také Booleova algebra. Každá podalgebra obsahuje 0 a 1, samu sebe a triviální algebru jako své podalgebry.
Mohutnost Booleovy algebry
Mohutnost Booleovy algebry odpovídá mohutnosti její nosné množiny. Je-li nekonečná, pak existuje Booleova algebra mohutnosti .
Zdroje
- BALCAR B., ŠTĚPÁNEK P. Teorie množin, Kapitola IV. Academia, Praha, 1986.