Vyplývání

Logické vyplývání je sémantický pojem. Jde o něco, co je lidem vlastní už od dětství, není potřeba jej studovat. Existuje intuitivní logické vyplývání. Logika si klade za cíl poskytnout nástroj k efektivnějšímu vyvozování, žádná definice vyplývání však přímo nekoresponduje s intuicí.

  • argument je platný (valid), pokud platí nutně na základě logické formy, správnost úsudku ještě nezaručuje pravdivost závěru (je-li nějaká z premis nepravdivá), správnost úsudku je dána logickou strukturou, ověřujeme ji tedy pouze analyticky
  • argument je platný (sound; v různých překladech: dokonalý, přesvědčivý, korektní, řádný), pokud je platný a má pravdivé premisy, tedy je správný formálně i obsahově
Například:

Všichni lidé jsou smrtelní. Všichni Řekové jsou lidé. Všichni Řekové jsou smrtelní.
Jana je slečna. Jana není vdaná.
Číslo n je sudé. Číslo n je delitelné 3. Číslo n je dělitelné 6.
Jan se narodil v Praze. Jan se narodil v ČR. Věcně správný úsudek, neplatí však nutně (v závislosti na datu jeho narození).

Definice logického vyplývání

Tarského modelově teoretická definice

Etablovaná definice logického vyplývání, jak se dnes v logice používá. Bernard Bolzano definoval dříve velmi podobnou definici, která se odlišuje jen v některých částech. Předpokládá libovolné univerzum. V premisách nahradíme mimologické výrazy. Zabývá se jen zúženými jazyky, nikoli přirozeným. Dosazujeme nejen posloupnosti předmětů, ale i vlastností. Interpretujeme výrazy, zkoumáme, zda v příslušném modelu platí daná tvrzení. Bolzano dosazuje potenciální významy. Drží definici na úrovni významu, nejde do reality.

Etchemendy vytýká:

  • nestačí extenzionální ekvivalence, vyžadujeme i ekvivalenci intenzionální
  • nelze testovat například pravidlo modus ponens dosazováním každého jednoho dosazení, existuje zde nutná platnost
  • záleží na způsobu vymezení logických konstant - to je sporné i podle Tarského a Bolzana
  • samotný pojem modelu - odkaz k tomu, jestli něco skutečně v univerzu odpovídá - podle Etchemendyho může zkreslovat; pojem možného světa

Syntaktická definice

právě tehdy, když

Využívá pojmu dokazatelnosti. Závěr vyplývá z premis, pokud je z nich dokazatelný; musíme tedy dokázat úplnost. Zpochybníme-li modelově teoretickou definici vyplývání, pak zpochybňujeme i tuto definici.

přirozený jazyk logická struktura logická forma
Sokrates je moudrý M(s) P(a)

Sylogismus

Definice: Sylogismus je řeč, v níž, je-li něco dáno, nutně něco jiného, různého od toho, co je dáno, vyplývá právě tím, že dané jest.

Sylogismus je užší pojem než logické vyplývání, znamená platný úsudek, podle Aristotela tedy neexistuje neplatný sylogismus. Premisy musí být alespoň dvě a závěr se od premis musí lišit, takže není sylogismus. Původně nepřipouští, že ze sporu lze vyvodit cokoli, jak je to bráno dnes. V průběhu historie se také mění přístup k axiomu.

  • axiom dnes = cokoli, co vezmeme za výchozí předpoklad
  • axiom dříve = něco, co bezprostředně nahlížíme, na čem se shodnou všichni

Zdroje

Tento článek vznikl na základě poznámek z přednášky Filosofie logiky. Doporučenou literaturu k tomuto tématu naleznete zde.

Reference

Související články

Analytická filosofie