Booleova algebra

Booleova algebra, nazvaná podle irského matematika George Boolea, je struktura , kde je neprázdný nosič, jsou binární operátory, 0 je nejmenší a 1 největší prvek, je unární operátor na B a platí axiomy:
asociativita
komutativita
distributivita
komplementarita
absorpce
nedegenerovanost

Poslední z uvedených axiomů způsobuje, že triviální svaz tvořený jednoprvkovou množinou (0 = 1) není BA.

Booleova algebra je distributivní komplementární svaz, tedy pro každý prvek z nosiče existuje právě jeden jeho komplement (doplněk) takový, který splňuje . Uvedené operace, tedy průsek, spojení a operaci pro doplněk, označujeme jako booleovská operace.

Dualita operací

Máme-li formuli v jazyce , pak její dualitu vytvoříme tak, že nahradíme za , za ,1 za 0 a 0 za 1. Formule platí v každé BA, jestliže v každé BA platí její dualita . Stačí nám tedy dokazovat jen polovinu vět, zbytek dostaneme díky této vlastnosti.

Formule a zákony platné v Booleově algebře



(symetrický rozdíl)



Zákony de Morganovy




Monotonie

Jestliže a , pak v každé Booleově algebře platí:




Isomorfismus BA

Dvě Booleovy algebry a jsou isomorfní právě tehdy, když a jsou isomorfní jako uspořádání.

Mohutnost Booleovy algebry

Mohutnost Booleovy algebry odpovídá mohutnosti její nosné množiny. Je-li nekonečná, pak existuje Booleova algebra mohutnosti .

Zdroje

  • BALCAR B., ŠTĚPÁNEK P. Teorie množin, Kapitola IV. Academia, Praha, 1986.