Matematické vzorce (LaTeX)

Pro spoustu údajů je potřeba napsat nějaký ten vzoreček nebo vztah. Někdy stačí napsat vztah normálním textem, ale jakmile je trochu složitější, je třeba to udělat trochu jinak. Vzorec se zapisuje ve formátu programu TeX mezi značky <math> a </math>, např. <math>x = y^2</math> vytvoří zápis $ x = y^2 $.

U každého vzorce musí být popis toho, co jednotlivé proměnné, případně další netriviální, nebo nějak zvláštně užité symboly, znamenají. Zrovna tak je dobré se trošku rozepsat o významu jednotlivých částí vzorce, pokud je složitější. To, že je vzorec samozřejmý pro Vás, neznamená, že je srozumitelný pro všechny. Encyklopedie se píše pro neodborníky a i když se předpokládá nějaká úroveň základních znalostí (většinou středoškolské úrovně), nelze spoléhat na to, že čtenáři znají to, co Vy.

Speciální znaky

Všechny běžné znaky (písmena, čísla) se nemění až na speciální znaky. # $ % _ \ { } které mají význam při vytváření vzorců. Pokud je potřebujete, stačí před ně napsat zpětné lomítko (to se samo o sobě zapíše jako \backslash).

Indexy

Pro horní index je znak ^ pro dolní index _.

$ ds^2 = dx_1^2 + dx_2^2 + dx_3^2 - c^2 dt^2 $

zápis: ds^2 = dx_1^2 + dx_2^2 + dx_3^2 - c^2 dt^2


$ R_i{}^j{}_{kl} = g^{jm} R_{imkl} = - g^{jm} R_{mikl} = - R^j{}_{ikl}\,\! $

zápis: R_i{}^j{}_{kl} = g^{jm} R_{imkl} = - g^{jm} R_{mikl} = - R^j{}_{ikl}\,\!

Řecká a další písmena

Jako řecká písmena slouží znak \ následovaný názvem písmene v angličtině, např. \alpha, \beta, atd.

$ \alpha \beta \gamma \Gamma \phi \Phi \Psi\ \tau \Omega $

zápis: \alpha \beta \gamma \Gamma \phi \Phi \Psi\ \tau \Omega

Příklady pro množiny, švabach a hebrejštinu následují.

$ x\in\mathbb{R}\sub\mathbb{C} $

zápis: x\in\mathbb{R}\sub\mathbb{C}

$ \mathbf{x}\cdot\mathbf{y} = 0 $

zápis: \mathbf{x}\cdot\mathbf{y} = 0

$ \aleph \beth \gimel \daleth $

zápis: \aleph \beth \gimel \daleth

$ \mathcal{ABC} $

zápis: \mathcal{ABC}

$ \mathfrak{a} \mathfrak{A} \mathfrak{B} $

zápis: \mathfrak{a} \mathfrak{A} \mathfrak{B}

Diakritika

Vložíte-li do <math> ne-ASCII znak, objeví se ve výstupu červená chybová hláška, např. $ á $.

Diakritiku je však možné vložit pomocí TeXových příkazů:

$ \acute{a} \quad \check{a} \quad \grave{a} \quad \breve{a} \quad \tilde{a} \quad {\hat a} $

zápis: \acute{a} \quad \check{a} \quad \grave{a} \quad \breve{a} \quad \tilde{a} \hat{a}

Matematické symboly

Číselné a jiné relace

$ \leq < \ll \gg > \geq \nleq \ngeq \dot= \equiv {\not \equiv} \ne \sim \nsim \simeq {\not \simeq} \approx {\not \approx} $

zápis: \leq < \ll \gg > \geq \nleq \ngeq \dot= \equiv {\not \equiv} \ne \sim \nsim \simeq {\not \simeq} \approx {\not \approx}

Množinové vztahy

$ \subset \subseteq \supset \supseteq \in {\not \in} \ni $

zápis: \subset \subseteq \supset \supseteq \in {\not \in} \ni

Logické spojky

$ \land \lor \lnot \Leftarrow \Rightarrow \Leftrightarrow \nLeftrightarrow \Uparrow $

zápis: \land (nebo \and) \lor \lnot (nebo \neg) \Leftarrow \Rightarrow \Leftrightarrow \nLeftrightarrow \Uparrow

Geometrie a další

$ \parallel \nparallel \perp \angle \nabla \backslash \forall \exists $

zápis: \parallel \nparallel \perp \angle \nabla \backslash \forall \exists

Standardní funkce

Standardní funkce je potřeba uvádět jako

$ \sin x + \ln y +\operatorname{sgn}\,z $

zápis: \sin x + \ln y +\operatorname{sgn}\,z

nikoliv pouze

$ sin x + ln y + sgn z\,\! $

zápis: sin x + ln y + sgn z

Zlomky a odmocniny

$ f(x) = 2x + \frac{x - 7}{x^2 + 4} $

zápis: f(x) = 2x + \frac{x - 7}{x^2 + 4}

$ \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $

zápis: \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

$ \sqrt[3]{q + \sqrt{ q^2 - p^3 }} + \sqrt[3]{q - \sqrt{ q^2 - p^3 }} $

zápis: \sqrt[3]{q + \sqrt{ q^2 - p^3 }} + \sqrt[3]{q - \sqrt{ q^2 - p^3 }}

Závorky a absolutní hodnota

$ \|f\| = \inf \{ K \in \langle 0,+\infty) : |f(x)| \leq K \|x\| \mbox{ pro každé } x \in X \} $

zápis: \|f\| = \inf \{ K \in \langle 0,+\infty) : |f(x)| \leq K \|x\| \mbox{ pro každé } x \in X \}

$ f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2} \right) $

zápis: f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2} \right)

$ \left| 4 x^3 + \left( x + \frac{42}{1+x^4} \right) \right| $

zápis: \left| 4 x^3 + \left( x + \frac{42}{1+x^4} \right) \right|

Matice a pole

$ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} $ $ \begin{vmatrix} \lambda - a & -b & -c \\ -d & \lambda - e & -f \\ -g & -h & \lambda - i \end{vmatrix} $ $ \begin{matrix} \mbox{První číslo} & x & 8 \\ \mbox{Druhé číslo} & y & 15 \\ \mbox{Součet} & x + y & 23 \\ \mbox{Rozdíl} & x - y & -7 \\ \mbox{Součin} & xy & 120 \end{matrix} $

zápis: \begin{pmatrix}a & b & c \\d & e & f \\g & h & i \end{pmatrix}
       \begin{vmatrix}\lambda - a & -b & -c \\-d & \lambda - e & -f \\-g & -h & 
         \lambda - i \end{vmatrix}
       \begin{matrix}\mbox{První číslo} & x & 8 \\\mbox{Druhé číslo} & y & 15 \\
         \mbox{Součet} & x + y & 23 \\\mbox{Rozdíl} & x - y & -7 \\
         \mbox{Součin} & xy & 120 \end{matrix}

$ f(n)=\left\{\begin{matrix} n/2, & \mbox{pokud }n\mbox{ je liché} \\ 3n+1, & \mbox{pokud }n\mbox{ je sudé} \end{matrix}\right. $

zápis: f(n)=\left\{\begin{matrix} n/2, & \mbox{pokud }n\mbox{ je liché} \\ 3n+1, & 
         \mbox{pokud   }n\mbox{ je sudé}\end{matrix}\right.

Suma

Pro sumu je příkaz \sum, pro produkt součinů je příkaz \prod, jako horní a dolní meze se používají horní a dolní indexy.

$ \sum_{k=1}^N k^2 $

zápis: \sum_{k=1}^N k^2

$ \prod_{i=1}^N x_i $

zápis: \prod_{i=1}^N x_i

Limity

Pro limity je příkaz \lim s dolím indexem, příkaz \to slouží jako šipka.

$ \lim_{n \to \infty}x_n $

zápis: \lim_{n \to \infty}x_n

Derivace

V české notaci bývá zvykem psát diferenciály „rovné“ pomocí \mathrm{} jako

$ \mathrm{d}x\, $
zápis: \mathrm{d}x,

tedy např pro derivaci f podle x

$ \frac{\mathrm{d}f}{\mathrm{d}x}\, $
zápis: \frac{\mathrm{d}f}{\mathrm{d}x}

Parciální defivace f podle x

$ \frac{\part f}{\part x}\, $
zápis: \frac{\part f}{\part x}

Derivace podle času se často značívá tečkou

$ \dot{q}=\frac{\partial q}{\partial t} $, $ \ddot{q}=\frac{\partial^2 q}{\partial t^2} $
zápis: \dot{q}=\frac{\partial q}{\partial t}</math>, \ddot{q}=\frac{\partial^2 q}{\partial t^2}

Integrály

Pro integrál je příkaz \int, popř. \iint, \iiint pro vícerozměrné integrály, pro uzavřený integrál je \oint, pro horní a dolní mez se používá horní a dolní index. Další speciální znak \, se používá pro vynucení mezery.

$ \int_{-N}^{N} e^x\, \mathrm{d}x $

zápis: \int_{-N}^{N} e^x\, \mathrm{d}x

$ \iint_{\Omega} f(x,y)\, \mathrm{d}x\mathrm{d}y $

zápis: \iint_{\Omega} f(x,y)\, \mathrm{d}x\mathrm{d}y

$ \oint_{C} x^3\, \mathrm{d}x + 4y^2\, \mathrm{d}y $

zápis: \oint_{C} x^3\, \mathrm{d}x + 4y^2\, \mathrm{d}y

V české notaci rovněž bývá zvykem psát diferenciály „rovné“ pomocí \mathrm{} (viz výše)

Sazba vzorce pod libovolný symbol

Chceme-li vysázet nějaký vzorec nebo text pod znak operátoru (např. max, nebo Res), potom můžeme použít následující

$ \underset{z = c}{\operatorname{Res}}f = 0 $

zápis: \underset{z = c}{\operatorname{Res}}f = 0

Renderování vzorce

Některé vzorce jsou vygenerovány jako text, některé jako obrázek PNG. Pokud si chcete vynutit obrázek, připište na konec vzorce

\,\!

$ R_i{}^j{}_{kl} = g^{jm} R_{imkl} = - g^{jm} R_{mikl} = - R^j{}_{ikl} $

$ R_i{}^j{}_{kl} = g^{jm} R_{imkl} = - g^{jm} R_{mikl} = - R^j{}_{ikl}\,\! $


Poznámka: MediaWiKi pravděpodobně podporuje ještě variantu zobrazení pomocí MathML (viz nastavení), podle všeho je ale v takové případně nutné, aby server posílal správný mime (application/xhtml+xml nebo application/xml). Wikipedia ovšem používá mime text/html. Je to dáno neschopností IE zpracovat XML dokument, tudíž při posílaní správné hlavičky by jeho uživatelům wiki fungovala špatně nebo vůbec.



Wikipedia-logo-cs.png Na této stránce byla použita část textu původního článku Matematické vzorce z české Wikipedie. Nezměněnou převzatou verzi naleznete zde. Wikipedia-logo-cs.png