Moderní použití kryptologie: Porovnání verzí

m
Řádek 120: Řádek 120:
 
[[Historie kryptologie]]<br />
 
[[Historie kryptologie]]<br />
 
[[Vládou ovládaná kryptologie]]<br />
 
[[Vládou ovládaná kryptologie]]<br />
 +
[[Módy činnosti]]
 
=== Klíčová slova ===
 
=== Klíčová slova ===
 
Módy činnosti, Algoritmy kryptologie, Šifrování, Digitální podpis
 
Módy činnosti, Algoritmy kryptologie, Šifrování, Digitální podpis
 
[[Kategorie: Informační studia a knihovnictví|*]]
 
[[Kategorie: Informační studia a knihovnictví|*]]

Verze z 22. 1. 2015, 12:01

Kryptologie je matematický vědní obor, který se zabývá utajováním a odkrýváním obsahu tajných zpráv. K tomu využívá šifrovací a dešifrovací algoritmy.

Slovo kryptologie pochází z řečtiny => kryptós = skrytý a logia = studovat

Moderní kryptologie pracuje na pomezí matematiky, výpočetní techniky a elektrotechniky. Nejčastěji je využívána k ochraně dat ve formě, počítačového hesla, digitálního podpisu a také je využívána k autentizaci dat, viz níže.[1]

Kryptologie se dále dělí na tři skupiny:

  • Kryptografie - zabývá se šifrovacími algoritmy a konstrukcí šifrovacích klíčů
  • Kryptoanalýza - snaží se zajistit dešifrovací kód a prolomit šifrovací algoritmy
  • Steganografie - snaží se zakrýt existenci tajné zprávy[2]

Základní pojmy moderní kryptologie

Šifrovací algoritmus

Algoritmus, který se snaží zašifrovat důležitá data. K šifrování a dešifrování těchto dat může být použit různý šifrovací klíč.

Kódovací algoritmus

Algoritmus, který také chrání data, ale nevyužívá k tomu žádný šifrovací klíč. Data jsou utajena samotným algoritmem. Může se jednat např. o data v jiném jazyce, která budou rozluštěna pouze těmi, kteří daným jazykem hovoří.

Prolomení algoritmu

K prolomení dochází, pokud je možno chráněná data přečíst, aniž by byl znám šifrovací klíč nebo kódovací algoritmus.[2]

Další důležité pojmy z oblasti kryptologie viz Základní pojmy v kryptologii

Dělení moderní kryptografie

Symetrická kryptografie

Symetrická kryptografie využívá pro šifrování i dešifrování zprávy jeden klíč. Využívá se ve všech tradičních formách šifrování, které byly objeveny do 70. let 20. století. Výhodou je nízká výpočetní náročnost při vytváření a rychlost. Naopak nevýhodou je, že obě strany musí spolu sdílet tajný klíč, na kterém se musí předem dohodnout nebo jej předem náhodně vygenerovat. Na správu a počet klíčů je symetrická kryptografie velice náročná. Aby se předešlo vyzrazení, často se symetrické šifry používají v kombinaci se šifrou asymetrickou. Symetrické šifry dále dělíme na šifry blokové a proudové.[3]

Obr. 1 Symetrická šifra

Blokové a proudové šifry

Blokové šifry používají algoritmy, které otevřený text šifrují po blocích.
Proudové šifry otevřený text šifrují po jednotlivých bitech.

Oba typy šifrování se dost prolínají, dochází k přepínání mezi jednotlivými šiframi, v krajním případě může také délka bloku degradovat na velikost jednoho znaku.

Blokové šifrování je snadno prolomitelné, proto bylo vyvinuto pět módů činnosti.[2]

Algoritmy symetrické kryptografie

Při tvorbě těchto algoritmů se používají dvě techniky, substituce a transpozice.

  • Substituční šifry
- písmena ve zprávě zachovávají svou pozici, ale během šifrování jsou nahrazena jinými znaky
  • Transpoziční šifry
- písmena si zachovávají svou totožnost, ale během šifrování se každé písmeno ve zprávě přemístí na jinou pozici[4]

V moderní kryptologii se využívají šifrovací algoritmy, které tyto dvě techniky kombinují.

  • DES (Data Encryption Standard)
- symetrická bloková šifra, která má 256 klíčů
- nejširší využití našla ve finančním sektoru
- je však snadno prolomitelná, klíč se v dnešní době dá vyhledat během jediného dne
- v současnosti se proto DES používá ve verzi zvané trojitý DES => klíč se skládá ze dvou až tří DES klíčů (112 nebo 168 bitů)
  • AES (Advanced Encryption Standard)
- šifrovací algoritmus pro ochranu elektronických dat, který s původním názvem Rijndael zvítězil v soutěži pořádané Národním institutem pro standardy a technologie (NIST)
- jedná se o symetrickou blokovou šifru, která k šifrování a dešifrování využívá jeden klíč
- délka klíče je může nabývat hodnoty 128, 192 a 256 bitů, měl by tak být odolný proti útokům hrubou silou[5]
  • IDEA (International Data Encryption Algorithm)
- bloková šifra, která používá 128-bitový klíč a šifruje bloky o délce 64 bitů
- byla používána v Pretty Good Privacy (PGP) = počítačový program sloužící k šifrování a podepisování[6]
  • RC2 (zkratka autorova pseudonymu Rivest Cipher)
- bloková šifra, která pracuje s 64-bitovými bloky dat, autorem je Ronald Rivest
- délka klíče se může měnit
  • RC4 (zkratka autorova pseudonymu Rivest Cipher)
- proudová šifra, používá se např. pro šifrovaný přenos webových stránek
- patent patří stejně jako u RC2 firmě RSA
- až do roku 1994 byl tento algoritmus tajen[2]

Asymetrická kryptografie

Asymetrická kryptografie využívá pro šifrování a dešifrování zprávy dva rozdílné klíče. Každý uživatel si tak nastaví veřejný šifrovací klíč a dešifrovací klíč soukromý. Soukromý klíč musí zůstat v tajnosti.[3]

Obr. 2 Asymetrická šifra

Tyto veřejné a soukromé klíče tvoří tzv. klíčový pár. Proto text, který je zašifrován jedním klíčem z páru, může být dešifrován pouze druhým klíčem ze stejného páru.[2]

Algoritmy asymetrické kryptografie

Tyto algoritmy se využívají nejen při šifrování, ale také při vytváření elektronických podpisů.[6]

  • RSA (podle počátečních písmen autorů)
- roku 1978 tento algoritmus vytvořili Ron Rivest, Adi Shamir a Len Adleman
- velikost bloků se pohybuje od velikosti 640 bitů, výjimkou nebývají ani velikosti 1024 nebo 2048 bitů
- proces je pomalejší než u symetrických šifer, protože šifrovací i dešifrovací procesy zahrnují hodně výpočtů s velkými čísly
- největší uplatnění nachází při tvorbě digitálních podpisů, příležitostně se používá také k šifrování symetrických algoritmů
- základ amerického standardu pro digitální podpisy (DSS)
- klíče obdobných velikostí jako u RSA
- ne moc vhodný algoritmus pro klasické šifrování[5]

Využití moderní kryptologie

Autentizace

Autentizace má dva různé významy

  1. Autentizace původu dat - ověřuje odkud data skutečně pocházejí
  2. Autentizace entit (párová) - jedna entita ověřuje entitu druhou

Většinou probíhá právě výměnou zpráv mezi dvěma entitami = autentizační protokol.
V tomto kontextu nemusí být entitou pouze člověk, ale může se jednat i o počítač. Aby uživatel mohl prokázat svou totožnost, nejen jinému uživateli, ale i počítači, využívají se k tomu tři prvky:

  • něco známého - heslo, PIN, atd.
  • něco vlastněného - plastiková kartička, autentizační kalkulačka, atd.
  • něco charakteristického pro uživatele - otisky prstů, sken sítnice, podpisy, rozpoznání hladu

Autentizace lze docílit také symetrickou kryptografií. Pak rozlišujeme dva druhy autentizace:

  1. Jednostranná - jeden uživatel se prokazuje druhému (ověřování pravosti v bankomatu, přihlašování do počítače,...)
  2. Oboustranná - oba uživatelé se prokazují navzájem (viz výše autentizační protokol)

Nejrozšířenějším autentizátorem, hlavně ve finančním sektoru je kód pro ověření zprávy (MAC = Message Authentication Code)[5]

Digitální podpis

Obr. 3 Digitální podpis

Pro vytváření elktronických podpisů se využívají asymetrické algoritmy. Úkolem takového podpisu je zajistit, aby po podepsání nebyl obsah otevřeného textu pozměněn. Pracuje se s dvojicí klíčů, veřejným a soukromým.
Určitá osoba zaeviduje veřejný klíč u nezávislé autority a obdrží elektronické potvrzení o jeho vlastnictví = certifikát.
Vlastník soukromého klíče použije na otevřený text tranformaci = elektronický podpis.
K veřejnému klíči má přístup kdokoliv, není důvod jej utajovat. Pomocí tohoto klíče lze pouze ověřit, že byl podepsán a že po podepsání nebyl text pozměněn.[6]
Zpracování asymetrické kryptografie je z výpočetního hlediska velice náročné, proto se využívají tzv. hashovací funkce.

Hashovací funkce

Hash = digitální otisk zprávy.
Základním principem je to, že výslednou hashovací funkcí je zhuštěný otisk => ten zastupuje původní zprávu. Hashovací funkce přijímají vstupní data libovolné délky, ale výstupní data jsou vždy řetězce o stejné délce.[5]

Certifikační autority

Hlavním úkolem certifikační autority je poskytování digitálně podepsaných certifikátů, které propojí entitu s hodnotou jeho veřejného klíče. Aby mohl být certifikát udělen, musí být veřejný klíč všeobecně známý a přístupný.
Certifikát je podepsaná zpráva, na které najdeme totožnost entity, hodnotu jejího veřejnéh klíče a někdy také datum platnosti.

Zdroje

Reference

  1. Cryptography. In: Wikipedia: the free encyclopedia [online]. Wikimedia Foundation, 2001-. Dostupné z: http://en.wikipedia.org/wiki/cryptography
  2. 2,0 2,1 2,2 2,3 2,4 DOSEDĚL, Tomáš. Počítačová bezpečnost a ochrana dat. 1. vyd. Brno: Computer Press, 2004, 190 s. ISBN 80-251-0106-1.
  3. 3,0 3,1 SINGH, Simon. Kniha kódů a šifer: tajná komunikace od starého Egypta po kvantovou kryptografii. 2. vyd. Praha: Dokořán, 2009, 382 s. ISBN 978-80-7363-268-7.
  4. ADAMS, Simon. Šifry a kódy: od hieroglyfů po hackery. 1. vyd. Praha: Slovart, 2003, 96 s. ISBN 80-7209-503-X.
  5. 5,0 5,1 5,2 5,3 PIPER, Fred a MURPHY, Sean. Kryptografie. 1. vyd. Praha: Dokořán, 2006, 157 s. ISBN 80-7363-074-5.
  6. 6,0 6,1 6,2 VONDRUŠKA, Pavel. Kryptologie, šifrování a tajná písma. 1. vyd. Praha: Albatros, 2006, 340 s. ISBN 80-00-01888-8.

Použitá literatura

  • Cryptography. In: Wikipedia: the free encyclopedia [online]. Wikimedia Foundation, 2001-. Dostupné z: http://en.wikipedia.org/wiki/cryptography
  • DOSEDĚL, Tomáš. Počítačová bezpečnost a ochrana dat. 1. vyd. Brno: Computer Press, 2004, 190 s. ISBN 80-251-0106-1.
  • PIPER, Fred a MURPHY, Sean. Kryptografie. 1. vyd. Praha: Dokořán, 2006, 157 s. ISBN 80-736-3074-5.
  • SINGH, Simon. Kniha kódů a šifer: tajná komunikace od starého Egypta po kvantovou kryptografii. 2. vyd. Praha: Dokořán, 2009, 382 s. ISBN 978-80-7363-268-7.
  • ADAMS, Simon. Šifry a kódy: od hieroglyfů po hackery. 1. vyd. Praha: Slovart, 2003, 96 s. ISBN 80-7209-503-X.
  • VONDRUŠKA, Pavel. Kryptologie, šifrování a tajná písma. 1. vyd. Praha: Albatros, 2006, 340 s. ISBN 80-00-01888-8.

Doporučená literatura

  • DOSEDĚL, Tomáš. Počítačová bezpečnost a ochrana dat. 1. vyd. Brno: Computer Press, 2004, 190 s. ISBN 80-251-0106-1.
  • PIPER, Fred a MURPHY, Sean. Kryptografie. 1. vyd. Praha: Dokořán, 2006, 157 s. ISBN 80-736-3074-5.

Zdroje obrázků

Obr. 1 Wikimedia commons http://commons.wikimedia.org/wiki/File:Symetrick%C3%A1_%C5%A1ifra.png?uselang=cs
Obr. 2 Wikimedia commons http://commons.wikimedia.org/wiki/File:Asymetrick%C3%A1_kryptografie.svg
Obr. 3 Wikimedia commons http://commons.wikimedia.org/wiki/File:Digital_Signature_diagram_cs.svg

Související články

Základní pojmy v kryptologii
Základní rozdělení kryptologie
Historie kryptologie
Vládou ovládaná kryptologie
Módy činnosti

Klíčová slova

Módy činnosti, Algoritmy kryptologie, Šifrování, Digitální podpis