Filtr
Verze z 13. 11. 2014, 17:46, kterou vytvořil Veronika.Kovrzkova (diskuse | příspěvky) (Založena nová stránka s textem „Množina <math>F \subseteq \mathcal{P}(X)</math> je filtr, pokud platí: # <math>\emptyset \notin F, X \in F</math> # <math>A, B \in F \rightarrow A \wedge…“)
Množina je filtr, pokud platí:
Duál k filtru je ideál:
- Nelze pochopit (syntaktická chyba): {\displaystyle F_{n}$ je '''triviální filtr''', pokud $F_{n} = \{X \subseteq \mathbb{N}: n \in F_{n}\}}
Je-li , pak platí:
- A je ultrafiltr, pokud
- A je prvofiltr (primefilter), pokud
- A je maximální filtr, pokud , není filtr
Výše uvedené tři podmínky jsou ekvivalentní.
Důkaz:
- Je-li U ultrafiltr, pak je prvofiltr.
- Je-li U prvofiltr, pak je maximální.
- Je-li U maximální, pak je ultra.
Je-li filtr, pak , je ultrafiltr.